scholarly journals Searching for central stars of planetary nebulae in Gaia DR2

2020 ◽  
Vol 638 ◽  
pp. A103 ◽  
Author(s):  
N. Chornay ◽  
N. A. Walton

Context. Accurate distance measurements are fundamental to the study of planetary nebulae (PNe) but they have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. The accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We developed and applied an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg Hα PN catalogue, taking into account the BP – RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources were inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and we discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.

1983 ◽  
Vol 103 ◽  
pp. 391-409 ◽  
Author(s):  
S.R. Pottasch

Determination of the distances to individual planetary nebulae are discussed. Especially those methods which are independent of assumed nebular properties (mass, absolute flux, etc.) are assembled and discussed. In this way, reasonable approximations to the distance can be obtained for about 50 planetary nebulae. The accuracy of the distances is tested by comparing nebular properties derived from these distances with the properties of nebulae at the galactic center or in the Magellanic clouds. A comparison is also made with the statistical distance determinations; the conclusion is that the assumption of constant mass often leads to an overestimate of the distance, while the assumption of constant Hβ flux leads to distances having individual uncertainties of up to a factor of 3.The central star temperature determination is summarized. Individual central stars are placed on the HR diagram and compared with theoretical predictions. Deductions concerning the evolution which can be made from the observations are discussed.


2018 ◽  
Vol 616 ◽  
pp. L2 ◽  
Author(s):  
S. Kimeswenger ◽  
D. Barría

Context. Planetary nebula distance scales often suffer from model-dependent solutions. Model-independent trigonometric parallaxes have been rare. Space-based trigonometric parallaxes are now available for a larger sample using the second Data Release of Gaia. Aims. We aim to derive a high-quality approach for selection criteria of trigonometric parallaxes for planetary nebulae and discuss possible caveats and restrictions in the use of this Data Release. Methods. A few hundred sources from previous distance scale surveys were manually cross-identified with data from the second Gaia Data Release (DR2) because coordinate-based matching does not work reliably. The data were compared with the results of previous distance scales and to the results of a recent similar study that used the first Data Release Gaia DR1. Results. While the few available previous ground-based trigonometric parallaxes as well as those obtained with the Hubble Space Telescope perfectly match the new data sets, older statistical distance scales, reaching larger distances, do show small systematic differences. When we restrict the comparison to the central stars for which the photometric colors of Gaia show a negligible contamination by the surrounding nebula, the difference is negligible for statistical distances based on radio flux, while those derived from Hα surface brightness still show minor differences. The DR2 study significantly improves the previous recalibration of the statistical distance scales using DR1/TGAS.


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


1989 ◽  
Vol 131 ◽  
pp. 355-355 ◽  
Author(s):  
D. J. Monk ◽  
M. J. Barlow ◽  
R. E. S. Clegg

AAT and IUE spectra of thirteen medium-excitation Magellanic Cloud planetary nebulae have been used to derive H I Zanstra effective temperatures and surface gravities for the central stars.


1993 ◽  
Vol 155 ◽  
pp. 175-175 ◽  
Author(s):  
J. R. Pier ◽  
H. C. Harris ◽  
C. C. Dahn ◽  
D. G. Monet

Parallaxes are presented for nine Planetary Nebulae central stars.


1997 ◽  
Vol 180 ◽  
pp. 40-45 ◽  
Author(s):  
H.C. Harris ◽  
C.C. Dahn ◽  
D.G. Monet ◽  
J.R. Pier

The accuracy of parallaxes obtained with ground-based CCD cameras now often reaches or exceeds 0.5 milliarcseconds. This improved accuracy permits us to measure significant parallaxes and determine distances for the nearest planetary nebulae. At present, the central stars of 11 planetary nebulae have been observed as part of the USNO parallax program. We now have determined distances with accuracies better than 20 percent for four central stars and better than 50 percent for five more. This paper gives the present status of the program, a brief interpretation of the results, and future prospects.


1997 ◽  
Vol 180 ◽  
pp. 287-287
Author(s):  
N. A. Walton ◽  
J. R. Walsh ◽  
G. Dudziak

The Abell catalogue of planetary nebulae (PN) are distinguished by their large size, low surface brightness and generally faint central stars. They are thought to be old PN approaching the White Dwarf cooling track. A number have evidence for late thermal pulses (H-poor ejecta near the central star, e.g. A78) and binary central stars.


1983 ◽  
Vol 103 ◽  
pp. 230-230
Author(s):  
R. Tylenda

Massive central stars (M > 1 Mo) of planetary nebulae burn nuclear fuel on a time scale of hundreds or tens of years which is shorter than the recombination time in a typical planetary nebula. Consequently the ionization and thermal structure of a nebula with such a nucleus is expected to be far from equilibrium conditions. The greatest chance of observing such a nebula is when the central star cools down to the white dwarf region. Time-dependent photoionization models suggest the following non-equilibrium effects to be expected at this stage. Firstly, the nebula shows a double shell structure, i.e. a bright, inner ring is surrounded by a faint, extended halo best seen in the HI lines and infrared lines from low-ionization species, such as (Ne II) 12.8 μ. Secondly, the low-excitation emission ((O II), (Ne II), (S III)) is enhanced relative to the high-excitation ((O III), (Ne III), (S III)). Thirdly, different modifications of the Zanstra method result in significantly different temperatures for the central star with a general rule that THI > THeII > THeII/HI The He II Zanstra method gives the most reliable result. Fourthly, the electron temperature derived from the (O III) lines is appreciably higher than that obtained from the (N II) lines. It is suggested that NGC 7027 and NGC 2440 possess massive central stars and that the above time-dependent effects are currently observed in these nebulae.


2003 ◽  
Vol 209 ◽  
pp. 541-542 ◽  
Author(s):  
Aubrie McLean ◽  
Martín A. Guerrero ◽  
Robert A. Gruendl ◽  
You-Hua Chu

The origin of the wide range of morphologies observed in planetary nebulae (PNe) is not well established. The influence of a binary companion of the central star can naturally explain this variety of morphologies, but very few PNe have known binary central stars. The evolution of the binary system with mass loss may result in the displacement of the central star from the nebular center. The large sample of PNe observed by HST is being used to search for de-centered central stars. Preliminary results indicate that the occurrence of de-centered central stars is widespread among all morphological types of PNe.


1993 ◽  
Vol 155 ◽  
pp. 91-91
Author(s):  
R.W. Tweedy

A high-resolution IUE spectral atlas of central stars of planetary nebulae and hot white dwarfs has been produced (part of Tweedy, 1991, PhD thesis from the University of Leicester, UK), and examples from it are shown here. It has been sorted into an approximate evolutionary sequence, based on published spectroscopic analyses, from the cool 28,000K young central star He 2–138, through the hot objects like NGC 7293 and NGC 246 at 90,000K and 130,000K respectively, down to 40,000K DA white dwarfs like GD 2, which is the chosen cutoff for this selection. Copies of a revised version of this atlas, which will include more recent spectroscopic information and also white dwarfs down to 35,000K – to include the Si III object GD 394 – will be sent to anyone who requests one.


Sign in / Sign up

Export Citation Format

Share Document