scholarly journals DeGaS-MC: Dense Gas Survey in the Magellanic Clouds

2020 ◽  
Vol 643 ◽  
pp. A63
Author(s):  
M. Galametz ◽  
A. Schruba ◽  
C. De Breuck ◽  
K. Immer ◽  
M. Chevance ◽  
...  

Context. Understanding the star-forming processes is key to understanding the evolution of galaxies. Investigating star formation requires precise knowledge of the properties of the dense molecular gas complexes where stars form and a quantification of how they are affected by the physical conditions to which they are exposed. The proximity, low metallicity, and wide range of star formation activity of the Large and Small Magellanic Clouds (LMC and SMC) make them prime laboratories to study how local physical conditions impact the dense gas reservoirs and their star formation efficiency. Aims. The aim of the Dense Gas Survey for the Magellanic Clouds (DeGaS-MC) project is to expand our knowledge of the relation between dense gas properties and star formation activity by targeting the LMC and SMC observed in the HCO+(2−1) and HCN(2−1) transitions. Methods. We carried out a pointing survey targeting two lines toward ∼30 LMC and SMC molecular clouds using the SEPIA180 instrument installed on the Atacama Pathfinder EXperiment (APEX) telescope. We performed a follow-up mapping campaign of the emission in the same transition in 13 star-forming regions. This first paper provides line characteristic catalogs and integrated line-intensity maps of the sources. Results. HCO+(2−1) is detected in 20 and HCN(2−1) in 8 of the 29 pointings observed. The dense gas velocity pattern follows the line-of-sight velocity field derived from the stellar population. The three SMC sources targeted during the mapping campaign were unfortunately not detected in our mapping campaign but both lines are detected toward the LMC 30Dor, N44, N105, N113, N159W, N159E, and N214 regions. The HCN emission is less extended than the HCO+ emission and is restricted to the densest regions. The HCO+(2−1)/HCN(2−1) brightness temperature ratios range from 1 to 7, which is consistent with the large ratios commonly observed in low-metallicity environments. A larger number of young stellar objects are found at high HCO+ intensities and lower HCO+/HCN flux ratios, and thus toward denser lines of sight. The dense gas luminosities correlate with the star formation rate traced by the total infrared luminosity over the two orders of magnitude covered by our observations, although substantial region-to-region variations are observed.

2020 ◽  
Vol 644 ◽  
pp. A125
Author(s):  
Cecilia Bacchini ◽  
Filippo Fraternali ◽  
Gabriele Pezzulli ◽  
Antonino Marasco

In the last decades, much effort has been put into finding the star formation law, which could unequivocally link the gas and the star formation rate (SFR) densities measured on a sub-kiloparsec scale in star-forming galaxies. The conventional approach of using the observed surface densities to infer star formation laws has however revealed a major and well-known issue, as such relations are valid for the high-density regions of galaxies but break down in low-density and HI-dominated environments. Recently, an empirical correlation between the total gas (HI+H2) and the SFR volume densities was obtained for a sample of nearby disc galaxies and for the Milky Way. This volumetric star formation (VSF) law is a single power-law with no break and a smaller intrinsic scatter with respect to the star formation laws based on the surface density. In this work, we explore the VSF law in the regime of dwarf galaxies in order to test its validity in HI-dominated, low-density, and low-metallicity environments. In addition, we assess this relation in the outskirts of spiral galaxies, which are low-density and HI-dominated regions similar to dwarf galaxies. Remarkably, we find that the VSF law, namely ρSFR ∝ ρgasα with α ≈ 2, is valid for both these regimes. This result indicates that the VSF law, which holds unbroken for a wide range of gas (≈3 dex) and SFR (≈6 dex) volume densities, is the empirical relation with the smallest intrinsic scatter and is likely more fundamental than surface-based star formation laws.


2012 ◽  
Vol 8 (S292) ◽  
pp. 333-333
Author(s):  
Steven N. Longmore

AbstractRecent surface- and volume-density star formation relations have been proposed which potentially unify our understanding of how gas is converted into stars, from the nearest star forming regions to ultra-luminous infrared galaxies. The inner 500 pc of our Galaxy – the Central Molecular Zone – contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of these star-formation prescriptions can be tested.We have used recently-available data from HOPS, MALT90 and HiGAL at wavelengths where the Galaxy is transparent, to find the dense, star-forming molecular gas across the Milky Way [Longmore et al. (2012a), Longmore et al. (2012b)]. We use water and methanol maser emission to trace star formation activity within the last 105 years and 30 GHz radio continuum emission from the Wilkinson Microwave Anisotropy Satellite (WMAP) to estimate the high-mass star formation rate averaged over the last ∼ 4 × 106 years.We find the dense gas distribution is dominated by the very bright and spatially-extended emission within a few degrees of the Galactic centre [Purcell et al. (2012)]. This region accounts for ∼80% of the NH3(1,1) integrated intensity but only contains 4% of the survey area. However, in stark contrast, the distribution of star formation activity tracers is relatively uniform across the Galaxy.To probe the dense gas vs SFR relationship towards the Galactic centre region more quantitatively, we compared the HiGAL column density maps to the WMAP-derived SFR across the same region. The total mass and SFR derived using these methods agree well with previous values in the literature. The main conclusion from this analysis is that both the column-density threshold and volumetric SF relations over-predict the SFR by an order of magnitude given the reservoir of dense gas available to form stars. The region 1° < l < 3.5°, |b| < 0.5° is particular striking in this regard. It contains ∼107 M⊙ of dense molecular gas — enough to form 1000 Orion-like clusters — but the present-day star formation rate within this gas is only equivalent to that in Orion. This implication of this result is that any universal column/volume density relations must be a necessary but not sufficient condition for SF to occur.Understanding why such large reservoirs of dense gas deviate from commonly assumed SF relations is of fundamental importance and may help in the quest to understand SF in more extreme (dense) environments, like those found in interacting galaxies and at earlier epochs of the Universe.


2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.


2019 ◽  
Vol 626 ◽  
pp. A23 ◽  
Author(s):  
D. Cormier ◽  
N. P. Abel ◽  
S. Hony ◽  
V. Lebouteiller ◽  
S. C. Madden ◽  
...  

The sensitive infrared telescopes, Spitzer and Herschel, have been used to target low-metallicity star-forming galaxies, allowing us to investigate the properties of their interstellar medium (ISM) in unprecedented detail. Interpretation of the observations in physical terms relies on careful modeling of those properties. We have employed a multiphase approach to model the ISM phases (H II region and photodissociation region) with the spectral synthesis code Cloudy. Our goal is to characterize the physical conditions (gas densities, radiation fields, etc.) in the ISM of the galaxies from the Herschel Dwarf Galaxy Survey. We are particularly interested in correlations between those physical conditions and metallicity or star-formation activity. Other key issues we have addressed are the contribution of different ISM phases to the total line emission, especially of the [C II]157 μm line, and the characterization of the porosity of the ISM. We find that the lower-metallicity galaxies of our sample tend to have higher ionization parameters and galaxies with higher specific star-formation rates have higher gas densities. The [C II] emission arises mainly from PDRs and the contribution from the ionized gas phases is small, typically less than 30% of the observed emission. We also find a correlation – though with scatter – between metallicity and both the PDR covering factor and the fraction of [C II] from the ionized gas. Overall, the low metal abundances appear to be driving most of the changes in the ISM structure and conditions of these galaxies, and not the high specific star-formation rates. These results demonstrate in a quantitative way the increase of ISM porosity at low metallicity. Such porosity may be typical of galaxies in the young Universe.


2020 ◽  
Vol 494 (1) ◽  
pp. 1276-1296
Author(s):  
Xue-Jian Jiang ◽  
Thomas R Greve ◽  
Yu Gao ◽  
Zhi-Yu Zhang ◽  
Qinghua Tan ◽  
...  

ABSTRACT To study the high-transition dense-gas tracers and their relationships to the star formation of the inner ∼2 kpc circumnuclear region of NGC 253, we present HCN J = 4−3 and HCO+ J = 4−3 maps obtained with the James Clerk Maxwell Telescope. Using the spatially resolved data, we compute the concentration indices r90/r50 for the different tracers. HCN and HCO+ 4–3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1–0 and the stellar component. The dense-gas fraction (fdense, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO+/CO) and the ratio R31 (CO 3–2/1–0) decline towards larger galactocentric distances, but increase with higher star formation rate surface density. The radial variation and the large scatter of fdense and R31 imply distinct physical conditions in different regions of the galactic disc. The relationships of fdense versus Σstellar, and SFEdense versus Σstellar are explored. SFEdense increases with higher Σstellar in this galaxy, which is inconsistent with previous work that used HCN 1–0 data. This implies that existing stellar components might have different effects on the high-J HCN and HCO+ than their low-J emission. We also find that SFEdense seems to be decreasing with higher fdense which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.


2008 ◽  
Vol 4 (S256) ◽  
pp. 191-202
Author(s):  
J. M. Oliveira

AbstractThe Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Large Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2019 ◽  
Vol 488 (3) ◽  
pp. 3929-3948 ◽  
Author(s):  
M Cano-Díaz ◽  
V Ávila-Reese ◽  
S F Sánchez ◽  
H M Hernández-Toledo ◽  
A Rodríguez-Puebla ◽  
...  

ABSTRACT We study the global star formation rate (SFR) versus stellar mass (M*) correlation, and the spatially resolved SFR surface density (ΣSFR) versus stellar mass surface density (Σ*) correlation, in a sample of ∼2000 galaxies from the MaNGA MPL-5 survey. We classify galaxies and spatially resolved areas into star forming and retired according to their ionization processes. We confirm the existence of a star-forming main sequence (SFMS) for galaxies and spatially resolved areas, and show that they have the same nature, with the global as a consequence of the local one. The latter presents a bend below a limit Σ* value, ≈3 × 107 M$\odot$ kpc−2, which is not physical. Using only star-forming areas (SFAs) above this limit, a slope and a scatter of ≈1 and ≈0.27 dex are determined. The retired galaxies/areas strongly segregate from their respective SFMSs, by ∼−1.5 dex on average. We explore how the global/local SFMSs depend on galaxy morphology, finding that for star-forming galaxies and SFAs, there is a trend to lower values of star formation activity with earlier morphological types, which is more pronounced for the local SFMS. The morphology not only affects the global SFR due to the diminish of SFAs with earlier types, but also affects the local SF process. Our results suggest that the local SF at all radii is established by some universal mechanism partially modulated by morphology. Morphology seems to be connected to the slow aging and sharp decline of the SF process, and on its own it may depend on other properties as the environment.


Author(s):  
J K Barrera-Ballesteros ◽  
S F Sánchez ◽  
T Heckman ◽  
T Wong ◽  
A Bolatto ◽  
...  

Abstract The processes that regulate star formation are essential to understand how galaxies evolve. We present the relation between star formation rate density, ΣSFR , and hydrostatic midplane pressure, Ph , for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey covering a wide range of stellar masses and morphologies. We find that these two parameters are tightly correlated, showing a smaller scatter in comparison to other star-forming relations. A power-law, with a slightly sub-linear index, is a good representation of this relation. Its residuals show a significant anti-correlation with both stellar age and metallicity whereas the total stellar mass may also play a secondary role in shaping the ΣSFR - Ph relation. For actively star-forming regions we find that the effective feedback momentum per unit stellar mass (p*/m*), measured from the Ph/ΣSFR ratio increases with Ph. The median value of this ratio for all the sampled regions is larger than the expected momentum just from supernovae explosions. Morphology of the galaxies, including bars, does not seem to have a significant impact in the ΣSFR - Ph relation. Our analysis indicates that local ΣSFR self-regulation comes mainly from momentum injection to the interstellar medium from supernovae explosions. However, other mechanisms in disk galaxies may also play a significant role in shaping the ΣSFR at kpc scales. Our results also suggest that Ph is the main parameter that modulates star formation at kpc scales, rather than individual components of the baryonic mass.


2019 ◽  
Vol 625 ◽  
pp. A65 ◽  
Author(s):  
F. Renaud ◽  
F. Bournaud ◽  
O. Agertz ◽  
K. Kraljic ◽  
E. Schinnerer ◽  
...  

The physical origin of enhanced star formation activity in interacting galaxies remains an open question. Knowing whether starbursts are triggered by an increase in the quantity of dense gas or an increase in the star formation efficiency therein would improve our understanding of galaxy evolution and make it possible to transfer the results obtained in the local Universe to high-redshift galaxies. In this paper, we analyze a parsec-resolution simulation of a model of interacting galaxies similar to the Antennae Galaxies. We find that the interplay of physical processes such as tides, shear, and turbulence shows complex and important variations in time and space, but that different combinations of these processes can produce similar signatures in observable quantities such as the depletion time and CO emission. Some clouds within the interacting galaxies exhibit an excess of dense gas (> 104 cm−3), while others only attain similarly high densities in the tail of their density distribution. The clouds with an excess of dense gas are found across all regions of the galaxies, but their number density varies between regions due to different cloud assembly mechanisms. This translates into variations in the scale dependence of quantities related to cloud properties and star formation. The super-linearity of the relationship between the star formation rate and gas density implies that the dense gas excess corresponds to a decrease in the depletion time, and thus leads to a deviation from the classical star formation regime that is visible up to galactic scales. We find that the αCO conversion factor between the CO luminosity and molecular gas mass exhibits stronger spatial than temporal variations in a system like the Antennae. Our results raise several caveats for the interpretation of observations of unresolved star-forming regions, but also predict that the diversity of environments for star formation will be better captured by the future generations of instruments.


Sign in / Sign up

Export Citation Format

Share Document