scholarly journals Is HR 6819 a triple system containing a black hole?

2020 ◽  
Vol 641 ◽  
pp. A43
Author(s):  
J. Bodensteiner ◽  
T. Shenar ◽  
L. Mahy ◽  
M. Fabry ◽  
P. Marchant ◽  
...  

Context. HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant plus black hole (BH) binary with an orbital period of 40 d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary and that the inner star, which is used as mass calibrator for the BH, is a B-type giant. Aims. We re-investigate the properties of HR 6819 to search for a possibly simpler alternative explanation for HR 6819, which does not invoke the presence of a triple system with a BH in the inner binary. Methods. Based on an orbital analysis, the disentangling of the spectra of the two visible components and the atmosphere analysis of the disentangled spectra, we investigate the configuration of the system and the nature of its components. Results. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40 d orbit. The inferred radial velocity amplitudes of K1 = 60.4 ± 1.0 km s−1 for the B-type primary and K2 = 4.0 ± 0.8 km s−1 for the Be-type secondary imply an extreme mass ratio of M2/M1 = 15 ± 3. We find that the B-type primary, which we estimate to contribute about 45% to the optical flux, has an effective temperature of Teff = 16 ± 1 kK and a surface gravity of log g = 2.8 ± 0.2 [cgs], while the Be secondary, which contributes about 55% to the optical flux, has Teff = 20 ± 2 kK and log g = 4.0 ± 0.3 [cgs]. We infer spectroscopic masses of 0.4−0.1+0.3and 6−3+5 for the primary and secondary which agree well with the dynamical masses for an inclination of i = 32°. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight (Pi ≈ 2 d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. Conclusions. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a BH. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.

2020 ◽  
Vol 637 ◽  
pp. L3 ◽  
Author(s):  
Th. Rivinius ◽  
D. Baade ◽  
P. Hadrava ◽  
M. Heida ◽  
R. Klement

Several dozen optical echelle spectra demonstrate that HR 6819 is a hierarchical triple. A classical Be star is in a wide orbit with an unconstrained period around an inner 40 d binary consisting of a B3 III star and an unseen companion in a circular orbit. The radial-velocity semi-amplitude of 61.3 km s−1 of the inner star and its minimum (probable) mass of 5.0 M⊙ (6.3 ± 0.7 M⊙) imply a mass of the unseen object of ≥4.2 M⊙ (≥5.0 ± 0.4 M⊙), that is, a black hole (BH). The spectroscopic time series is stunningly similar to observations of LB-1. A similar triple-star architecture of LB-1 would reduce the mass of the BH in LB-1 from ∼70 M⊙ to a level more typical of Galactic stellar remnant BHs. The BH in HR 6819 probably is the closest known BH to the Sun, and together with LB-1, suggests a population of quiet BHs. Its embedment in a hierarchical triple structure may be of interest for models of merging double BHs or BH + neutron star binaries. Other triple stars with an outer Be star but without BH are identified; through stripping, such systems may become a source of single Be stars.


2020 ◽  
Vol 498 (1) ◽  
pp. L58-L60
Author(s):  
Tsevi Mazeh ◽  
Simchon Faigler

ABSTRACT A recent paper by Rivinius et al. proposed that HR 6819 is a triple system, with a distant Be star and a binary of 40-d orbit, composed of a B3 III giant and a dormant black hole (BH). We suggest that the evidence for this model is not conclusive. In an alternative model, the companion of the giant is by itself a short-period binary in, say, a ∼4-d orbit, consisting, for example, of two A0 stars. Each of the two A0 stars should contribute ${\sim}4{{\ \rm per cent}}$ of the total brightness of the system in the V band, and their spectral lines are moving due to their assumed orbital motion with an unknown period. Therefore, only a careful analysis of the observed spectra can exclude such a model. Before such an analysis is presented and upper limits for the depths of the hypothetical A0 star absorption lines are derived, the model of a hidden close pair is more probable than the BH model.


2020 ◽  
Vol 639 ◽  
pp. L6 ◽  
Author(s):  
T. Shenar ◽  
J. Bodensteiner ◽  
M. Abdul-Masih ◽  
M. Fabry ◽  
L. Mahy ◽  
...  

Context. The intriguing binary LS V +22 25 (LB-1) has drawn much attention following claims of it being a single-lined spectroscopic binary with a 79-day orbit comprising a B-type star and a ≈70 M⊙ black hole – the most massive stellar black hole reported to date. Subsequent studies demonstrated a lack of evidence for a companion of such great mass. Recent analyses have implied that the primary star is a stripped He-rich star with peculiar sub-solar abundances of heavy elements, such as Mg and Fe. However, the nature of the secondary, which was proposed to be a black hole, a neutron star, or a main sequence star, remains unknown. Aims. Based on 26 newly acquired spectroscopic observations secured with the HERMES and FEROS spectrographs covering the orbit of the system, we perform an orbital analysis and spectral disentangling of LB-1 to elucidate the nature of the system. Methods. To derive the radial velocity semi-amplitude K2 of the secondary and extract the spectra of the two components, we used two independent disentangling methods: the shift-and-add technique and Fourier disentangling with FDBinary. We used atmosphere models to constrain the surface properties and abundances. Results. Our disentangling and spectral analysis shows that LB-1 contains two components of comparable brightness in the optical. The narrow-lined primary, which we estimate to contribute ≈55% in the optical, has spectral properties that suggest that it is a stripped star: it has a small spectroscopic mass (≈1 M⊙) for a B-type star and it is He- and N-rich. Unlike previous reports, the abundances of heavy elements are found to be solar. The “hidden” secondary, which contributes about 45% of the optical flux, is a rapidly rotating (vsini ≈ 300 km s−1) B3 V star with a decretion disk – a Be star. As a result of its rapid rotation and dilution, the photospheric absorption lines of the secondary are not readily apparent in the individual observations. We measure a semi-amplitude for this star of K2 = 11.2 ± 1.0 km s−1 and adopting a mass of M2 = 7 ± 2 M⊙ typical for B3 V stars, we derive an orbital mass for the stripped primary of M1 = 1.5 ± 0.4 M⊙. The orbital inclination of 39 ± 4° implies a near-critical rotation for the Be secondary (veq ≈ 470 km s−1). Conclusions. LB-1 does not contain a compact object. Instead, it is a rare Be binary system consisting of a stripped star (the former mass donor) and a Be star rotating at near its critical velocity (the former mass accretor). This system is a clear example that binary interactions play a decisive role in the production of rapid stellar rotators and Be stars.


2019 ◽  
Vol 622 ◽  
pp. A45
Author(s):  
T. Iijima ◽  
H. Naito ◽  
S. Narusawa

Context. CH Cyg is one of the most studied symbiotic stars. Its properties, however, are still not well known. Two main periods, about 15 years and 750 days, are known in the photometric and spectroscopic variations, and two models are proposed for these origins. One is a binary system with an orbital period of 15 years consisting of a hot component and pulsating red giant with a 750-day period. The other is a triple system consisting of an inner symbiotic binary with an orbital period of about 750 days and third component with an orbital period of 15 years. Several active stages have been observed since the 1970s during which the object brightened up by ΔU = 3−5 mag and prominent emission lines appeared. Large mass outflows were observed at some active stages. Aims. The spectral variation of CH Cyg has been monitored at Asiago Observatories to understand the problems mentioned above. We have analysed spectra obtained in the time period from 1995 to 2004 which covers an active stage during the years 1998−2000. Methods. High- and low-resolution optical spectra obtained at the Asiago Observatories are used. Results. Narrow absorption lines of Fe I, Cr I, Ti I, and so on appeared in 1998 at an early phase of the active stage. These lines are clearly distinguished from those of the M-type giant and are typically found on the spectrum of early A-type dwarfs. They were redshifted by about 30 km s−1 with respect to the absorption lines of the M-type giant. Assuming that their radial velocities represent the orbital motion of the hot component, its semi-amplitude is estimated to be 37.0 ± 0.5 km s−1. The masses of the hot component and the M-type giant are estimated to be 0.32 ± 0.02 M⊙ and 4.6 ± 0.2 M⊙, respectively, where a circular orbit with a period of 756 days is adopted. If the inner binary system has an elliptical orbit, e = 0.33, and a period of 750.1 days, the masses of the two components are 0.21 ± 0.01 M⊙ and 2.2 ± 0.1 M⊙, respectively. Our results lend support to the triple system model, because if the period of the symbiotic binary were 15 years, the mass of the hot component would be expected to exceed the Chandrasekhar limit. Highly blueshifted absorption components of H I and He I lines appeared at a later phase of the active stage. Mass ejections with velocities on the order of 1000 km s−1 seem to have occurred along the orbital plane from December 1998 to March 1999. The highest outflow velocity, − 2383 km s−1, was observed on 1999 February 26. Narrow absorption components of Na I D1, D2, and Fe II lines redshifted by 10−15 km s−1 coexisted with the highly blueshifted broad absorption components of H I and He I lines. This phenomenon might have been related to an inner disc inflow expected in wind-compressed discs. In contrast to the bipolar mass outflows at the past active stages, high-velocity equatorial mass ejections likely occurred at the active stage during the years 1998−2000. There should have been an eclipse of the hot component by the M-type giant in the inner binary system in the time period of December 1998 to January 1999. A clear light curve of the eclipse, however, was not detected. Possibly, the luminosity of the hot component was due mainly to free-free emission from the ejected circumstellar matter which was likely more extended than the M-type giant. On the other hand, another eclipse by the third component with the period of 15 years began at the end of May 1999 during which the hot component as well as the emitting regions of Hβ and Fe II lines were well eclipsed. The obscuring matter around the third component should have been much more extended than the M-type giant, and it was likely semi-transparent, because the spectrum of the M-type giant was well seen during the eclipse. The third component appears to be similar to the invisible secondary component in the long-period eclipsing binary ϵ Aur.


Science ◽  
2020 ◽  
Vol 368 (6491) ◽  
pp. eaba4356 ◽  
Author(s):  
Todd A. Thompson ◽  
Christopher S. Kochanek ◽  
Krzysztof Z. Stanek ◽  
Carles Badenes ◽  
Tharindu Jayasinghe ◽  
...  

Van den Heuvel and Tauris argue that if the red giant star in the system 2MASS J05215658+4359220 has a mass of 1 solar mass (M☉), then its unseen companion could be a binary composed of two 0.9 M☉ stars, making a triple system. We contend that the existing data are most consistent with a giant of mass 3.2−1.0+1.0M☉, implying a black hole companion of 3.3−0.7+2.8M☉.


1994 ◽  
Vol 268 (2) ◽  
pp. 430-436 ◽  
Author(s):  
S. Johnston ◽  
R. N. Manchester ◽  
A. G. Lyne ◽  
L. Nicastro ◽  
J. Spyromilio

2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


2020 ◽  
Vol 495 (3) ◽  
pp. 2786-2795 ◽  
Author(s):  
J J Eldridge ◽  
E R Stanway ◽  
K Breivik ◽  
A R Casey ◽  
D T H Steeghs ◽  
...  

ABSTRACT The recent identification of a candidate very massive (70 M⊙) black hole (BH) is at odds with our current understanding of stellar winds and pair-instability supernovae. We investigate alternate explanations for this system by searching the bpass v2.2 stellar and population synthesis models for those that match the observed properties of the system. We find binary evolution models that match the LB-1 system, at the reported Gaia distance, with more moderate BH masses of 4–7 M⊙. We also examine the suggestion that the binary motion may have led to an incorrect distance determination by Gaia. We find that the Gaia distance is accurate and that the binary system is consistent with the observation at this distance. Consequently, it is highly improbable that the BH in this system has the extreme mass originally suggested. Instead, it is more likely to be representative of the typical BH binary population expected in our Galaxy.


2018 ◽  
Vol 14 (S346) ◽  
pp. 149-151
Author(s):  
Lubomir Iliev

AbstractPleione is a classical Be star well known for its cyclic transitions between Be-, shell- and normal B spectral phases. Its nature as a binary system was discussed by McAlister et al. (1989), Gies et al. (1990), Luthardt & Menchenkova (1994) and Nemravova et al (2010). We present the results that trace the evolution of the dimensions of the circumstellar disk of Pleione that are related to the binary system.


Sign in / Sign up

Export Citation Format

Share Document