scholarly journals Estimating the size of X-ray lamppost coronae in active galactic nuclei

2020 ◽  
Vol 644 ◽  
pp. A132
Author(s):  
F. Ursini ◽  
M. Dovčiak ◽  
W. Zhang ◽  
G. Matt ◽  
P.-O. Petrucci ◽  
...  

Aims. We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. However, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. Methods. We employ a relativistic ray-tracing code, originally developed by Dovčiak and Done, that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies using simultaneous optical/UV and X-ray archival data from XMM-Newton. Results. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona, which is due to a larger and hotter inner disc area. The maximal spin solution is favoured, as it predicts an X-ray photon index in better agreement with the observations.

2014 ◽  
Vol 447 (2) ◽  
pp. 1692-1704 ◽  
Author(s):  
Qi-Xiang Yang ◽  
Fu-Guo Xie ◽  
Feng Yuan ◽  
Andrzej A. Zdziarski ◽  
Marek Gierliński ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A37 ◽  
Author(s):  
A. Tortosa ◽  
S. Bianchi ◽  
A. Marinucci ◽  
G. Matt ◽  
P. O. Petrucci

Context. We discuss the results of the hot corona parameters of active galactic nuclei (AGN) that have been recently measured with NuSTAR. The values taken from the literature of a sample of 19 bright Seyfert galaxies are analysed. Aims. The aim of this work is to look for correlations between coronal parameters, such as the photon index and cut-off energy (when a phenomenological model is adopted) or the optical depth and temperature (when a Comptonization model is used), and other parameters of the systems, such as the black hole mass or the Eddington ratio. Methods. We analysed the coronal parameters of the 19 unobscured, bright Seyfert galaxies that are present in the Swift/BAT 70-month catalogue and that have been observed by NuSTAR, alone or simultaneously with others X-ray observatories, such as Swift, Suzaku, or XMM-Newton. Results. We found an anti-correlation with a significance level >98% between the coronal optical depth and the coronal temperature of our sample. On the other hand, no correlation between the above parameters and the black hole mass, the accretion rate, and the intrinsic spectral slope of the sources is found.


2020 ◽  
Vol 495 (3) ◽  
pp. 3373-3386
Author(s):  
Savithri H Ezhikode ◽  
Gulab C Dewangan ◽  
Ranjeev Misra ◽  
Ninan Sajeeth Philip

ABSTRACT The primary X-ray emission from active galactic nuclei (AGNs), described by a power-law, irradiates the accretion disc producing reflection features in the spectrum. The reflection features arising from the inner regions of the disc can be significantly modified by the relativistic effects near the black hole. We investigate the relationship between the relativistic reflection fraction Rf, defined as the ratio of the coronal intensity that illuminates the accretion disc to the coronal intensity observed directly, and the hard X-ray photon index Γ of a Nuclear Spectroscopic Telescope Array (NuSTAR) sample of Seyfert 1 galaxies. The X-ray spectra are modelled using relxill code that helps to directly obtain the reflection fraction of a relativistically smeared reflection component. The parameter Rf depends on the amount of Comptonized X-ray emission intercepted by the inner accretion disc. We found a positive correlation between Γ and Rf in our sample. Seed photons from a larger area of an accretion disc entering the corona will result in increased cooling of the coronal plasma, giving rise to steeper X-ray spectrum. The corona irradiating the larger area of the disc will result in higher reflection fraction. Thus, the observed Rf –Γ relation is most likely related to the variations in the disc–corona geometry of AGNs.


2012 ◽  
Vol 8 (S290) ◽  
pp. 299-300
Author(s):  
Erlin Qiao ◽  
Bifang Liu

AbstractRecent observations reveal that a cool disk may survive in the innermost stable circular orbit (ISCO) for some black hole X-ray binaries in the low/hard state. The spectrum is characterized by a power law with a photon index Γ ~ 1.5-2.1 in the range of 2-10 keV and a weak disk component with temperature of ~ 0.2 keV. The formation of such a cool disk in the most inner region of black hole X-ray binaries at the low/hard state is investigated within the framework of disk accretion fed by condensation of hot corona. We also calculate the emergent spectra of the inner disk and corona. It's found that our model can very well explain the spectral features of GX 339-4 and Cyg X-1, in which the thin disk may exist at ISCO in the low/hard state.


1998 ◽  
Vol 500 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Kiyoshi Hayashida ◽  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Hajime Inoue

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


1998 ◽  
Vol 188 ◽  
pp. 141-144
Author(s):  
K. Iwasawa

X-ray spectroscopy of the broad iron line has revealed some relativistic effects caused by strong gravity about a black hole in active galactic nuclei (AGN). Recent results from ASCA observations of AGNs are reviewed.


2019 ◽  
Vol 15 (S350) ◽  
pp. 274-277
Author(s):  
Junjie Mao

AbstractPhotoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rather demanding or challenging for the current generation of (grating) spectrometers. The next generation of spectrometers will certainly provide data with better quality and large quantity, leading to tight constraints on the location and the kinetic power of AGN outflows. This contribution summarizes the state-of-the-art in this field.


Sign in / Sign up

Export Citation Format

Share Document