Velocity dispersion and dynamical masses for 388 galaxy clusters and groups. Calibrating the MSZ-Mdyn scaling relation for the PSZ2 sample

Author(s):  
A. Aguado-Barahona ◽  
J. A. Rubiño-Martín ◽  
A. Ferragamo ◽  
R. Barrena ◽  
A. Streblyanska ◽  
...  
2020 ◽  
Vol 228 ◽  
pp. 00011
Author(s):  
A. Ferragamo ◽  
J.A. Rubiño-Martín ◽  
J. Betancort-Rijo ◽  
E. Munari ◽  
B. Sartoris ◽  
...  

Using a set of 73 numerically simulated galaxy clusters, we have characterised the statistical and physical biases for three velocity dispersion and mass estimators, namely biweight, gapper and standard deviation, in the small number of galaxies regime (Ngal ≤ 75), both for the determination of the velocity dispersion and the dynamical mass of the clusters via the σ–M relation. These results are used to define a new set of unbiased estimators, that are able to correct for those statistical biases. By applying these new estimators to a subset of simulated observations, we show that they can retrieve bias-corrected values for both the mean velocity dispersion and the mean mass.


2014 ◽  
Vol 351 (1) ◽  
pp. 289-297
Author(s):  
Mohammad S. Khan ◽  
Mohamed H. Abdullah ◽  
Gamal B. Ali

2016 ◽  
Vol 460 (4) ◽  
pp. 3913-3924 ◽  
Author(s):  
Masato Shirasaki ◽  
Daisuke Nagai ◽  
Erwin T. Lau

1982 ◽  
Vol 252 ◽  
pp. 433 ◽  
Author(s):  
H. V. Capelato ◽  
D. Gerbal ◽  
G. Mathez ◽  
A. Mazure ◽  
E. Salvador-Sole

2019 ◽  
Vol 628 ◽  
pp. A13 ◽  
Author(s):  
A. Streblyanska ◽  
A. Aguado-Barahona ◽  
A. Ferragamo ◽  
R. Barrena ◽  
J. A. Rubiño-Martín ◽  
...  

Aims. The second catalogue of Planck Sunyaev–Zeldovich (SZ) sources, hereafter PSZ2, is the largest sample of galaxy clusters selected through their SZ signature in the full sky. At the time of publication, 21% of these objects had no known counterpart at other wavelengths. Using telescopes at the Canary Island observatories, we conducted the long-term observational programme 128-MULTIPLE-16/15B (hereafter LP15), a large and complete optical follow-up campaign of all the unidentified PSZ2 sources in the northern sky, with declinations above −15° and no correspondence in the first Planck catalogue PSZ1. The main aim of LP15 is to validate all those SZ cluster candidates, and to contribute to the characterization of the actual purity and completeness of full Planck SZ sample. In this paper, we describe the full programme and present the results of the first year of observations. Methods. The LP15 programme was awarded 44 observing nights, spread over two years in three telescopes at the Roque de los Muchachos Observatory. The full LP15 sample comprises 190 previously unidentified PSZ2 sources. For each target, we performed deep optical imaging and spectroscopy. Our validation procedure combined this optical information with SZ emission as traced by the publicly available Planck Compton y-maps. The final classification of the new galaxy clusters as optical counterparts of the SZ signal is established according to several quantitative criteria based on the redshift, velocity dispersion, and richness of the clusters. Results. This paper presents the detailed study of 106 objects out of the LP15 sample, corresponding to all the observations carried out during the first year of the programme. We confirmed the optical counterpart for 41 new PSZ2 sources, 31 of them being validated using also velocity dispersion based on our spectroscopic information. This is the largest dataset of newly confirmed PSZ2 sources without any previous optical information. All the confirmed counterparts are rich structures (i.e. they show high velocity dispersion), and are well aligned with the nominal Planck coordinates (i.e. ∼70% of them are located at less than 3′ distance). In total, 65 SZ sources are classified as unconfirmed, 57 of them being due to the absence of an optical over-density, and eight of them due to a weak association with the observed SZ decrement. Most of the sources with no optical counterpart are located at low galactic latitudes and present strong galactic cirrus in the optical images, the dust contamination being the most probable explanation for their inclusion in the PSZ2 catalogue.


2016 ◽  
Vol 458 (1) ◽  
pp. 379-393 ◽  
Author(s):  
I. Chiu ◽  
A. Saro ◽  
J. Mohr ◽  
S. Desai ◽  
S. Bocquet ◽  
...  

2007 ◽  
Vol 669 (2) ◽  
pp. 905-928 ◽  
Author(s):  
M. R. Becker ◽  
T. A. McKay ◽  
B. Koester ◽  
R. H. Wechsler ◽  
E. Rozo ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 1114-1127 ◽  
Author(s):  
P Steyrleithner ◽  
G Hensler ◽  
A Boselli

ABSTRACT Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intracluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor systems by RPS is not easily observed and must happen in the outskirts of clusters. In a few objects in close by galaxy clusters and the field, RPS has been observed. Since cluster early-type DGs also show a large variety of internal structures (unexpected central gas reservoirs, blue stellar cores, composite radial stellar profiles), we aim in this study to investigate how ram pressure (RP) affects the interstellar gas content and therefore the star formation (SF) activity. Using a series of numerical simulations, we quantify the dependence of the stripped-off gas on the velocity of the infalling DGs and on the ambient ICM density. We demonstrated that SF can be either suppressed or triggered by RP depending on the ICM density and the DGs mass. Under some conditions, RP can compress the gas, so that it is unexpectedly retained in the central DG region and forms stars. When gas clouds are still bound against stripping but lifted from a thin disc and fall back, their new stars form an ellipsoidal (young) stellar population already with a larger velocity dispersion without the necessity of harassment. Most spectacularly, star clusters can form downstream in stripped-off massive gas clouds in the case of strong RP. We compare our results to observations.


2020 ◽  
Vol 499 (3) ◽  
pp. 3792-3805
Author(s):  
Lawrence E Bilton ◽  
Kevin A Pimbblet ◽  
Yjan A Gordon

ABSTRACT We produce a kinematic analysis of AGN-hosting cluster galaxies from a sample of 33 galaxy clusters selected using the X-ray Clusters Database (BAX) and populated with galaxies from the Sloan Digital Sky Survey Data Release 8. The 33 galaxy clusters are delimited by their relative intensity of member galaxy substructuring as a proxy to core merging to derive two smaller sub-samples of 8 dynamically active (merging) and 25 dynamically relaxed (non-merging) states. The AGN were selected for each cluster sub-sample by employing the WHAN diagram to the strict criteria of log10([N ii]/Hα) ≥ −0.32 and EWHα ≥ 6 Å, providing pools of 70 mergings and 225 non-merging AGN sub-populations. By co-adding the clusters to their respective dynamical states to improve the signal-to-noise ratio of our AGN sub-populations we find that merging galaxy clusters on average host kinematically active AGN between 0–1.5r200 as r200 → 0, where their velocity dispersion profile (VDP) presents a significant deviation from the non-AGN sub-population VDP by ≳3σ. This result is indicative that the AGN-hosting cluster galaxies have recently coalesced on to a common potential. Further analysis of the composite distributions illustrates non-merging AGN-hosting sub-populations have, on average, already been accreted and predominantly lie within backsplash regions of the projected phase-space. This suggests merging cluster dynamical states hold relatively younger AGN sub-populations kinematically compared with those found in non-merging cluster dynamical states.


Sign in / Sign up

Export Citation Format

Share Document