Determination of spatial velocity dispersion profile and stream velocity field in galaxy clusters - Application to Coma

1982 ◽  
Vol 252 ◽  
pp. 433 ◽  
Author(s):  
H. V. Capelato ◽  
D. Gerbal ◽  
G. Mathez ◽  
A. Mazure ◽  
E. Salvador-Sole
2020 ◽  
Vol 228 ◽  
pp. 00011
Author(s):  
A. Ferragamo ◽  
J.A. Rubiño-Martín ◽  
J. Betancort-Rijo ◽  
E. Munari ◽  
B. Sartoris ◽  
...  

Using a set of 73 numerically simulated galaxy clusters, we have characterised the statistical and physical biases for three velocity dispersion and mass estimators, namely biweight, gapper and standard deviation, in the small number of galaxies regime (Ngal ≤ 75), both for the determination of the velocity dispersion and the dynamical mass of the clusters via the σ–M relation. These results are used to define a new set of unbiased estimators, that are able to correct for those statistical biases. By applying these new estimators to a subset of simulated observations, we show that they can retrieve bias-corrected values for both the mean velocity dispersion and the mean mass.


MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2627-2632 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.


2014 ◽  
Vol 351 (1) ◽  
pp. 289-297
Author(s):  
Mohammad S. Khan ◽  
Mohamed H. Abdullah ◽  
Gamal B. Ali

1988 ◽  
Vol 126 ◽  
pp. 691-692
Author(s):  
Herwig Dejonghe

A 1-parameter family of anisotropic models is presented. They all satisfy the Plummer law in the mass density, but have different velocity dispersions. Moreover, the stars are not confined to a particular subset of the total accessible phase space. This family is mathematically simple enough to be explored analytically in detail. The family is rich enough though to allow for a 3-parameter generalization which illustrates that even when both the mass density and the velocity dispersion profiles are required to be the same, a degeneracy in the possible distribution functions persists. The observational consequences of the degeneracy can be studied by calculating the observable radial velocity line profiles obtained with different distribution functions. It turns out that line profiles are relatively sensitive to changes in the distribution function. They therefore can be considered to be more natural observables when a determination of the distribution function is desired.


2001 ◽  
Vol 46 (8) ◽  
pp. 596-601 ◽  
Author(s):  
D. D. Ivlev ◽  
L. A. Maksimova ◽  
R. I. Nepershin

Sign in / Sign up

Export Citation Format

Share Document