scholarly journals Signatures of ubiquitous magnetic reconnection in the deep atmosphere of sunspot penumbrae

2021 ◽  
Vol 648 ◽  
pp. A54
Author(s):  
Luc H. M. Rouppe van der Voort ◽  
Jayant Joshi ◽  
Vasco M. J. Henriques ◽  
Souvik Bose

Context. Ellerman bombs are regions with enhanced Balmer line wing emission and mark magnetic reconnection in the deep solar atmosphere in active regions and the quiet Sun. They are often found in regions where opposite magnetic polarities are in close proximity. Recent high-resolution observations suggest that Ellerman bombs are more prevalent than previously thought. Aims. We aim to determine the occurrence of Ellerman bombs in the penumbra of sunspots. Methods. We analyzed high spatial resolution observations of sunspots in the Balmer Hα and Hβ lines as well as auxiliary continuum channels obtained with the Swedish 1-m Solar Telescope and applied the k-means clustering technique to systematically detect and characterize Ellerman Bombs. Results. Features with all the defining characteristics of Ellerman bombs are found in large numbers over the entire penumbra. The true prevalence of these events is only fully appreciated in the Hβ line due to the highest spatial resolution and lower chromospheric opacity. We find that the penumbra hosts some of the highest Ellerman bomb densities, surpassed only by the moat in the immediate surroundings of the sunspot. Some penumbral Ellerman bombs show flame morphology and rapid dynamical evolution. Many penumbral Ellerman bombs are fast moving with typical speed of 3.7 km s−1 and sometimes more than 10 km s−1. Many penumbral Ellerman bombs migrate from the inner to the outer penumbra over hundreds of km, and some continue moving beyond the outer penumbral boundary into the moat. Many penumbral Ellerman bombs are found in the vicinity of regions with opposite magnetic polarity. Conclusions. We conclude that reconnection is a near continuous process in the low atmosphere of the penumbra of sunspots that manifest in the form of penumbral Ellerman bombs. These are so prevalent that they may be a major sink of sunspot magnetic energy.

2020 ◽  
Vol 644 ◽  
pp. A130
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
E. R. Priest ◽  
S. K. Solanki

Coronal plasma in the cores of solar active regions is impulsively heated to more than 5 MK. The nature and location of the magnetic energy source responsible for such impulsive heating is poorly understood. Using observations of seven active regions from the Solar Dynamics Observatory, we found that a majority of coronal loops hosting hot plasma have at least one footpoint rooted in regions of interacting mixed magnetic polarity at the solar surface. In cases when co-temporal observations from the Interface Region Imaging Spectrograph space mission are available, we found spectroscopic evidence for magnetic reconnection at the base of the hot coronal loops. Our analysis suggests that interactions of magnetic patches of opposite polarity at the solar surface and the associated energy release during reconnection are key to impulsive coronal heating.


Author(s):  
Manolis K. Georgoulis ◽  
Alexander Nindos ◽  
Hongqi Zhang

Coronal mass ejections (CMEs) are large-scale expulsions of coronal plasma and magnetic field propagating through the heliosphere. Because CMEs are observed by white-light coronagraphs which, by design, occult the solar disc, supporting disc observations (e.g. in EUV, soft X-rays, Halpha and radio) must be employed for the study of their source regions and early development phases. We review the key properties of CME sources and highlight a certain causal sequence of effects that may occur whenever a strong (flux-massive and sheared) magnetic polarity inversion line develops in the coronal base of eruptive active regions (ARs). Storing non-potential magnetic energy and helicity in a much more efficient way than ARs lacking strong polarity inversion lines, eruptive regions engage in an irreversible course, making eruptions inevitable and triggered when certain thresholds of free energy and helicity are crossed. This evolution favours the formation of pre-eruption magnetic flux ropes. We describe the steps of this plausible path to sketch a picture of the pre-eruptive phase of CMEs that may apply to most events, particularly the ones populating the high end of the energy/helicity distribution, that also tend to have the strongest space-weather implications. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


2017 ◽  
Vol 13 (S335) ◽  
pp. 243-249 ◽  
Author(s):  
Huaning Wang ◽  
Yihua Yan ◽  
Han He ◽  
Xin Huang ◽  
Xinghua Dai ◽  
...  

AbstractIt is well known that the energy for solar eruptions comes from magnetic fields in solar active regions. Magnetic energy storage and dissipation are regarded as important physical processes in the solar corona. With incomplete theoretical modeling for eruptions in the solar atmosphere, activity forecasting is mainly supported with statistical models. Solar observations with high temporal and spatial resolution continuously from space well describe the evolution of activities in the solar atmosphere, and combined with three dimensional reconstruction of solar magnetic fields, makes numerical short-term (within hours to days) solar activity forecasting possible. In the current report, we propose the erupting frequency and main attack direction of solar eruptions as new forecasts and present the prospects for numerical short-term solar activity forecasting based on the magnetic topological framework in solar active regions.


2021 ◽  
Vol 920 (2) ◽  
pp. 77
Author(s):  
Yilin Guo ◽  
Yijun Hou ◽  
Ting Li ◽  
Jun Zhang

2020 ◽  
Vol 235 ◽  
pp. 07003
Author(s):  
Yingchao Lu ◽  
Fan Guo ◽  
Patrick Kilian ◽  
Hui Li ◽  
Chengkun Huang ◽  
...  

A rotating pulsar creates a surrounding pulsar wind nebula (PWN) by steadily releasing an energetic wind into the interior of the expanding shockwave of supernova remnant or interstellar medium. At the termination shock of a PWN, the Poynting-flux- dominated relativistic striped wind is compressed. Magnetic reconnection is driven by the compression and converts magnetic energy into particle kinetic energy and accelerating particles to high energies. We carrying out particle-in-cell (PIC) simulations to study the shock structure as well as the energy conversion and particle acceleration mechanism. By analyzing particle trajectories, we find that many particles are accelerated by Fermi-type mechanism. The maximum energy for electrons and positrons can reach hundreds of TeV.


2000 ◽  
Vol 195 ◽  
pp. 443-444
Author(s):  
B. T. Welsch ◽  
D. W. Longcope

“Transient brightenings” (or “microflares”) regularly deposit 1027 ergs of energy in the solar corona, and account for perhaps 20% of the active corona's power (Shimizu 1995). We assume these events correspond to episodes of magnetic reconnection along magnetic separators in the solar corona. Using the techniques of magnetic charge topology, we model active region fields as arising from normally distributed collections of “magnetic charges”, point-like sources/sinks of flux (or field lines). Here, we present statistically determined separator (X-ray loop) lengths, derived from first principles. We are in the process of statistical calculations of heating rates due to reconnection events along many separators.


1993 ◽  
Vol 419 ◽  
pp. 398 ◽  
Author(s):  
K. R. Lang ◽  
R. F. Willson ◽  
J. N. Kile ◽  
J. Lemen ◽  
K. T. Strong ◽  
...  

2019 ◽  
Vol 486 (4) ◽  
pp. 4936-4946 ◽  
Author(s):  
P Vemareddy

Abstract Using time-sequence vector magnetic field observation from Helioseismic and Magnetic Imager, we examined the connection of non-neutralized currents and the observed activity in 20 solar active regions (ARs). The net current in a given magnetic polarity is algebraic sum of direct current (DC) and return current (RC) and the ratio |DC/RC| is a measure of degree of net current neutralization (NCN). In the emerging ARs, the non-neutrality of these currents builds with the onset of flux emergence, following the relaxation to neutrality during the separation motion of bipolar regions. Accordingly, some emerging ARs are source regions of CMEs occurring at the time of higher level non-neutrality. ARs in the post-emergence phase can be CME productive provided they have interacting bipolar regions with converging and shearing motions. In these cases, the net current evolves with higher level (>1.3) of non-neutrality. Differently, the |DC/RC| in flaring and quiet ARs vary near unity. In all the AR samples, the |DC/RC| is higher for chiral current density than that for vertical current density. Owing to the fact that the non-neutralized currents arise in the vicinity of sheared polarity-inversion-lines (SPILs), the profiles of the total length of SPIL segments and the degree of NCN follow each other with a positive correlation. We find that the SPIL is localized as small segments in flaring-ARs, whereas it is long continuous in CME-producing ARs. These observations demonstrate the dividing line between the CMEs and flares with the difference being in global or local nature of magnetic shear in the AR that reflected in non-neutralized currents.


Sign in / Sign up

Export Citation Format

Share Document