scholarly journals Hot Jupiters, cold kinematics. High phase space densities of host stars reflect an age bias

Author(s):  
A. J. Mustill ◽  
M. Lambrechts ◽  
M. B. Davies
2006 ◽  
Vol 73 (2) ◽  
Author(s):  
G. Ferrari ◽  
R. E. Drullinger ◽  
N. Poli ◽  
F. Sorrentino ◽  
G. M. Tino

2004 ◽  
Vol 79 (3) ◽  
pp. 367-370 ◽  
Author(s):  
A. Shevchenko ◽  
A. Jaakkola ◽  
T. Lindvall ◽  
I. Tittonen ◽  
M. Kaivola

2015 ◽  
Vol 11 (S320) ◽  
pp. 397-402
Author(s):  
A. A. Vidotto ◽  
R. Fares ◽  
M. Jardine ◽  
C. Moutou ◽  
J.-F. Donati

AbstractThe proper characterisation of stellar winds is essential for the study of propagation of eruptive events (flares, coronal mass ejections) and the study of space weather events on exoplanets. Here, we quantitatively investigate the nature of the stellar winds surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive the wind properties at the position of the hot-Jupiters’ orbits (temperature, velocity, magnetic field intensity and pressure). We show that the exoplanets studied here are immersed in a local stellar wind that is much denser than the local conditions encountered around the solar system planets (e.g., 5 orders of magnitude denser than the conditions experienced by the Earth). The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (2 to 3 orders of magnitude larger than the interplanetary medium surrounding the Earth). The characterisation of the host star's wind is also crucial for the study of how the wind interacts with exoplanets. For example, we compute the exoplanetary radio emission that is released in the wind-exoplanet interaction. For the hot-Jupiters studied here, we find radio fluxes ranging from 0.02 to 0.13 mJy. These fluxes could become orders of magnitude higher when stellar eruptions impact exoplanets, increasing the potential of detecting exoplanetary radio emission.


2015 ◽  
Vol 11 (S320) ◽  
pp. 382-387
Author(s):  
Scott J. Wolk ◽  
Ignazio Pillitteri ◽  
Katja Poppenhaeger

AbstractSince soon after the discovery of hot Jupiters, it had been suspected that interaction of these massive bodies with their host stars could give rise to observable signals. We discuss the observational evidence for star-planet interactions (SPI) of tidal and magnetic origin observed in X-rays and FUV. Hot Jupiters can significantly impact the activity of their host stars through tidal and magnetic interaction, leading to either increased or decreased stellar activity – depending on the internal structure of the host star and the properties of the hosted planet. In HD 189733, X-ray and FUV flares are preferentially in a very restricted range of planetary phases. Matsakos et al. (2015) show, using MHD simulations, planetary gas can be liberated, forming a stream of material that gets compressed and accretes onto the star with a phase lag of 70-90 degrees. This scenario explains many features observed both in X-rays and the FUV (Pillitteri et al. 2015). On the other hand, WASP-18 – an F6 star with a massive hot Jupiter, shows no signs of activity in X-rays or UV. Several age indicators (isochrone fitting, Li abundance) point to a young age (~0.5 –1.0 Gyr) and thus significant activity was expected. In this system, tidal SPI between the star and the very close-in and massive planet appears to destroy the formation of magnetic dynamo and thus nullify the stellar activity.


2020 ◽  
Vol 494 (1) ◽  
pp. 363-377 ◽  
Author(s):  
Samuel H C Cabot ◽  
Nikku Madhusudhan ◽  
Luis Welbanks ◽  
Anjali Piette ◽  
Siddharth Gandhi

ABSTRACT The class of ultra-hot Jupiters comprises giant exoplanets undergoing intense irradiation from their host stars. They have proved to be a particularly interesting population for their orbital and atmospheric properties. One such planet, WASP-121b, is in a highly misaligned orbit close to its Roche limit, and its atmosphere exhibits a thermal inversion. These properties make WASP-121b an interesting target for additional atmospheric characterization. In this paper, we present analyses of archival high-resolution optical spectra obtained during transits of WASP-121b. We model the Rossiter-McLaughlin effect and the Centre-to-Limb Variation and find that they do not significantly affect the transmission spectrum in this case. However, we discuss scenarios where these effects warrant more careful treatment by modelling the WASP-121 system and varying its properties. We report a new detection of atmospheric absorption from H α in the planet with a transit depth of $1.87\pm 0.11{{\ \rm per\ cent}}$. We further confirm a previous detection of the Na i doublet, and report a new detection of Fe i via cross-correlation with a model template. We attribute the H α absorption to an extended Hydrogen atmosphere, potentially undergoing escape, and the Fe i to equilibrium chemistry at the planetary photosphere. These detections help to constrain the composition and chemical processes in the atmosphere of WASP-121b.


Author(s):  
Dmitry V. Bisikalo ◽  
Pavel V. Kaygorodov ◽  
Valery I. Shematovich

The history of exoplanetary atmospheres studies is strongly based on the observations and investigations of the gaseous envelopes of hot Jupiters—exoplanet gas giants that have masses comparable to the mass of Jupiter and orbital semi-major axes shorter than 0.1 AU. The first exoplanet around a solar-type star was a hot Jupiter discovered in 1995. Researchers found an object that had completely atypical parameters compared to planets known in the solar system. According to their estimates, the object might have a mass about a half of the Jovian mass and a very short orbital period (four days), which means that it has an orbit roughly corresponding to the orbit of Mercury. Later, many similar objects were discovered near different stars, and they acquired a common name—hot Jupiters. It is still unclear what the mechanism is for their origin, because generally accepted theories of planetary evolution predict the formation of giant planets only at large orbital distances, where they can accrete enough matter before the protoplanetary disc disappears. If this is true, before arriving at such low orbits, hot Jupiters might have a long migration path, caused by interactions with other massive planets and/or with the gaseous disc. In favor of this model is the discovery of many hot Jupiters in elliptical and highly inclined orbits, but on the other hand several observed hot Jupiters have circular orbits with low inclination. An alternative hypothesis is that the cores of future hot Jupiters are super-Earths that may later intercept matter from the protoplanetary disk falling on the star. The scientific interest in hot Jupiters has two aspects. The first is the peculiarity of these objects: they have no analogues in the solar system. The second is that, until recently, only for hot Jupiters was it possible to obtain observational characteristics of their atmospheres. Many of the known hot Jupiters are eclipsing their host stars, so, from their light curve and spectral data obtained during an eclipse, it became possible to obtain information about their shape and their atmospheric composition. Thus it is possible to conclude that hot Jupiters are a common type of exoplanet, having no analogues in the solar system. Many aspects of their evolution and internal structure remain unclear. Being very close to their host stars, hot Jupiters must interact with the stellar wind and stellar magnetic field, as well as with stellar flares and coronal mass ejections, allowing researchers to gather information about them. According to UV observations, at least a fraction of hot Jupiters have extended gaseous envelopes, extending far beyond of their upper atmospheres. The envelopes are observable with current astronomical instruments, so it is possible to develop their astrophysical models. The history of hot Jupiter atmosphere studies during the past 20 years and the current status of modern theories describing the extended envelopes of hot Jupiters are excellent examples of the progress in understanding planetary atmospheres formation and evolution both in the solar system and in the extrasolar planetary systems.


2019 ◽  
Vol 63 (2) ◽  
pp. 94-106 ◽  
Author(s):  
A. A. Cherenkov ◽  
I. F. Shaikhislamov ◽  
D. V. Bisikalo ◽  
V. I. Shematovich ◽  
L. Fossati ◽  
...  
Keyword(s):  

2019 ◽  
Vol 15 (S354) ◽  
pp. 467-472
Author(s):  
P. Wilson Cauley

AbstractHot Jupiters are an extraordinary class of exoplanets, orbiting their host stars with periods of hours to a few days. Some of these objects have day-side temperatures approaching photospheric temperatures of late K-type stars. I will give an overview of how we characterize the atmospheres of these fascinating objects and some the more recent exciting results to come from ground and space-based telescopes, as well as what the future holds for detailed characterization of short-period exoplanet atmospheres.


Sign in / Sign up

Export Citation Format

Share Document