scholarly journals AMICO galaxy clusters in KiDS-DR3: The impact of estimator statistics on the luminosity-mass scaling relation

Author(s):  
M. Smit ◽  
A. Dvornik ◽  
M. Radovich ◽  
K. Kuijken ◽  
M. Maturi ◽  
...  
2016 ◽  
Vol 460 (4) ◽  
pp. 3913-3924 ◽  
Author(s):  
Masato Shirasaki ◽  
Daisuke Nagai ◽  
Erwin T. Lau

2016 ◽  
Vol 458 (1) ◽  
pp. 379-393 ◽  
Author(s):  
I. Chiu ◽  
A. Saro ◽  
J. Mohr ◽  
S. Desai ◽  
S. Bocquet ◽  
...  

2019 ◽  
Vol 486 (2) ◽  
pp. 1594-1607 ◽  
Author(s):  
R Capasso ◽  
J J Mohr ◽  
A Saro ◽  
A Biviano ◽  
N Clerc ◽  
...  

Abstract We use galaxy dynamical information to calibrate the richness–mass scaling relation of a sample of 428 galaxy clusters that are members of the CODEX sample with redshifts up to z ∼ 0.7. These clusters were X-ray selected using the ROSAT All-Sky Survey (RASS) and then cross-matched to associated systems in the redMaPPer (the red sequence Matched-filter Probabilistic Percolation) catalogue from the Sloan Digital Sky Survey. The spectroscopic sample we analyse was obtained in the SPIDERS program and contains ∼7800 red member galaxies. Adopting NFW mass and galaxy density profiles and a broad range of orbital anisotropy profiles, we use the Jeans equation to calculate halo masses. Modelling the scaling relation as $\lambda \propto \text{A}_{\lambda } {M_{\text{200c}}}^{\text{B}_{\lambda }} ({1+z})^{\gamma _{\lambda }}$, we find the parameter constraints $\text{A}_{\lambda }=38.6^{+3.1}_{-4.1}\pm 3.9$, $\text{B}_{\lambda }=0.99^{+0.06}_{-0.07}\pm 0.04$, and $\gamma _{\lambda }=-1.13^{+0.32}_{-0.34}\pm 0.49$, where we present systematic uncertainties as a second component. We find good agreement with previously published mass trends with the exception of those from stacked weak lensing analyses. We note that although the lensing analyses failed to account for the Eddington bias, this is not enough to explain the differences. We suggest that differences in the levels of contamination between pure redMaPPer and RASS + redMaPPer samples could well contribute to these differences. The redshift trend we measure is more negative than but statistically consistent with previous results. We suggest that our measured redshift trend reflects a change in the cluster galaxy red sequence (RS) fraction with redshift, noting that the trend we measure is consistent with but somewhat stronger than an independently measured redshift trend in the RS fraction. We also examine the impact of a plausible model of correlated scatter in X-ray luminosity and optical richness, showing it has negligible impact on our results.


2018 ◽  
Vol 615 ◽  
pp. A112 ◽  
Author(s):  
F. Ruppin ◽  
F. Mayet ◽  
G.W. Pratt ◽  
R. Adam ◽  
P. Ade ◽  
...  

The complete characterization of the pressure profile of high-redshift galaxy clusters, from their core to their outskirts, is a major issue for the study of the formation of large-scale structures. It is essential to constrain a potential redshift evolution of both the slope and scatter of the mass-observable scaling relations used in cosmology studies based on cluster statistics. In this paper, we present the first thermal Sunyaev–Zel’dovich (tSZ) mapping of a cluster from the sample of the New IRAM Kids Arrays (NIKA2) SZ large program that aims at constraining the redshift evolution of cluster pressure profiles and the tSZ-mass scaling relation. We observed the galaxy cluster PSZ2 G144.83+25.11 at redshift z = 0.58 with the NIKA2 camera, a dual-band (150 and 260 GHz) instrument operated at the Institut de Radioastronomie Millimtrique (IRAM) 30-m telescope. We identify a thermal pressure excess in the south-west region of PSZ2 G144.83+25.11 and a high-redshift sub-millimeter point source that affect the intracluster medium (ICM) morphology of the cluster. The NIKA2 data are used jointly with tSZ data acquired by the Multiplexed SQUID/TES Array at Ninety Gigahertz (MUSTANG), Bolocam, and Planck experiments in order to non-parametrically set the best constraints on the electronic pressure distribution from the cluster core (R ~ 0.02R500) to its outskirts (R ~ 3R500). We investigate the impact of the over-pressure region on the shape of the pressure profile and on the constraints on the integrated Compton parameter Y500. A hydrostatic mass analysis is also performed by combining the tSZ-constrained pressure profile with the deprojected electronic density profile from XMM-Newton. This allows us to conclude that the estimates of Y500 and M500 obtained from the analysis with and without masking the disturbed ICM region differ by 65% and 79%, respectively. This work highlights that NIKA2 will have a crucial impact on the characterization of the scatter of the Y500−M500 scaling relation due to its high potential to constrain the thermodynamic and morphological properties of the ICM when used in synergy with X-ray observations of similar angular resolution. This study also presents the typical products that will be delivered to the community for all clusters included in the NIKA2 tSZ Large Program.


2019 ◽  
Vol 490 (2) ◽  
pp. 2380-2389 ◽  
Author(s):  
Huanqing Chen ◽  
Camille Avestruz ◽  
Andrey V Kravtsov ◽  
Erwin T Lau ◽  
Daisuke Nagai

ABSTRACT We use a statistical sample of galaxy clusters from a large cosmological N-body + hydrodynamics simulation to examine the relation between morphology, or shape, of the X-ray emitting intracluster medium (ICM) and the mass accretion history of the galaxy clusters. We find that the mass accretion rate (MAR) of a cluster is correlated with the ellipticity of the ICM. The correlation is largely driven by material accreted in the last ∼4.5 Gyr, indicating a characteristic time-scale for relaxation of cluster gas. Furthermore, we find that the ellipticity of the outer regions (R ∼ R500c) of the ICM is correlated with the overall MAR of clusters, while ellipticity of the inner regions (≲0.5 R500c) is sensitive to recent major mergers with mass ratios of ≥1:3. Finally, we examine the impact of variations in cluster mass accretion history on the X-ray observable–mass scaling relations. We show that there is a continuous anticorrelation between the residuals in the TX–M relation and cluster MARs, within which merging and relaxed clusters occupy extremes of the distribution rather than form two peaks in a bimodal distribution, as was often assumed previously. Our results indicate that the systematic uncertainties in the X-ray observable–mass relations can be mitigated by using the information encoded in the apparent ICM ellipticity.


2014 ◽  
Vol 443 (4) ◽  
pp. 3309-3317 ◽  
Author(s):  
Sarah L. Mulroy ◽  
Graham P. Smith ◽  
Chris P. Haines ◽  
Daniel P. Marrone ◽  
Nobuhiro Okabe ◽  
...  

2021 ◽  
Vol 502 (3) ◽  
pp. 4039-4047
Author(s):  
Charles Thorpe-Morgan ◽  
Denys Malyshev ◽  
Christoph-Alexander Stegen ◽  
Andrea Santangelo ◽  
Josef Jochum

ABSTRACT Galaxy clusters are the largest virialized objects in the Universe and, as such, have high dark matter (DM) concentrations. This abundance of dark matter makes them promising targets for indirect DM searches. Here we report the details of a search, utilizing almost 12 yr of Fermi/LAT data, for gamma-ray signatures from the pair annihilation of WIMP dark matter in the GeV energy band. From this, we present the constraints on the annihilation cross-section for the $b\overline{b}$, W+W−, and γγ channels, derived from the non-detection of a characteristic signal from five nearby, high Galactic latitude, galaxy clusters (Centaurus, Coma, Virgo, Perseus, and Fornax). We discuss the potential of a boost to the signal due to the presence of substructures in the DM haloes of selected objects, as well as the impact of uncertainties in DM profiles on the presented results. We assert that the obtained limits are, within a small factor, comparable to the best available limits of those based on Fermi/LAT observations of dwarf spheroidal galaxies.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2020 ◽  
Vol 500 (2) ◽  
pp. 2316-2335
Author(s):  
Tiago Castro ◽  
Stefano Borgani ◽  
Klaus Dolag ◽  
Valerio Marra ◽  
Miguel Quartin ◽  
...  

ABSTRACT Luminous matter produces very energetic events, such as active galactic nuclei and supernova explosions, that significantly affect the internal regions of galaxy clusters. Although the current uncertainty in the effect of baryonic physics on cluster statistics is subdominant as compared to other systematics, the picture is likely to change soon as the amount of high-quality data is growing fast, urging the community to keep theoretical systematic uncertainties below the ever-growing statistical precision. In this paper, we study the effect of baryons on galaxy clusters, and their impact on the cosmological applications of clusters, using the magneticum suite of cosmological hydrodynamical simulations. We show that the impact of baryons on the halo mass function can be recast in terms on a variation of the mass of the haloes simulated with pure N-body, when baryonic effects are included. The halo mass function and halo bias are only indirectly affected. Finally, we demonstrate that neglecting baryonic effects on haloes mass function and bias would significantly alter the inference of cosmological parameters from high-sensitivity next-generations surveys of galaxy clusters.


Sign in / Sign up

Export Citation Format

Share Document