scholarly journals Imprints of mass accretion history on the shape of the intracluster medium and the TX–M relation

2019 ◽  
Vol 490 (2) ◽  
pp. 2380-2389 ◽  
Author(s):  
Huanqing Chen ◽  
Camille Avestruz ◽  
Andrey V Kravtsov ◽  
Erwin T Lau ◽  
Daisuke Nagai

ABSTRACT We use a statistical sample of galaxy clusters from a large cosmological N-body + hydrodynamics simulation to examine the relation between morphology, or shape, of the X-ray emitting intracluster medium (ICM) and the mass accretion history of the galaxy clusters. We find that the mass accretion rate (MAR) of a cluster is correlated with the ellipticity of the ICM. The correlation is largely driven by material accreted in the last ∼4.5 Gyr, indicating a characteristic time-scale for relaxation of cluster gas. Furthermore, we find that the ellipticity of the outer regions (R ∼ R500c) of the ICM is correlated with the overall MAR of clusters, while ellipticity of the inner regions (≲0.5 R500c) is sensitive to recent major mergers with mass ratios of ≥1:3. Finally, we examine the impact of variations in cluster mass accretion history on the X-ray observable–mass scaling relations. We show that there is a continuous anticorrelation between the residuals in the TX–M relation and cluster MARs, within which merging and relaxed clusters occupy extremes of the distribution rather than form two peaks in a bimodal distribution, as was often assumed previously. Our results indicate that the systematic uncertainties in the X-ray observable–mass relations can be mitigated by using the information encoded in the apparent ICM ellipticity.

2019 ◽  
Vol 488 (1) ◽  
pp. 1301-1319 ◽  
Author(s):  
Reju Sam John ◽  
Surajit Paul ◽  
Luigi Iapichino ◽  
Karl Mannheim ◽  
Harish Kumar

ABSTRACT Galaxy clusters are known to be reservoirs of cosmic rays (CRs), as inferred from theoretical calculations or detection of CR-derived observables. CR acceleration in clusters is mostly attributed to the dynamical activity that produces shocks. Shocks in clusters emerge out of merger or accretion, but which one is more effective in producing CRs? at which dynamical phase? and why? To this aim, we study the production or injection of CRs through shocks and its evolution in the galaxy clusters using cosmological simulations with the enzo code. Particle acceleration model considered here is primarily the Diffusive Shock Acceleration (DSA) of thermal particles, but we also report a tentative study with pre-existing CRs. Defining appropriate dynamical states using the concept of virialization, we studied a sample of merging and non-merging clusters. We report that the merger shocks (with Mach number $\mathcal {M}\sim 2-5$) are the most effective CR producers, while high-Mach peripheral shocks (i.e. $\mathcal {M}\gt 5$) are mainly responsible for the brightest phase of CR injection in clusters. Clusters once merged, permanently deviate from CR and X-ray mass scaling of non-merging systems, enabling us to use it as a tool to determine the state of merger. Through a temporal and spatial evolution study, we found a strong correlation between cluster merger dynamics and CR injection. We observed that the brightest phase of X-ray and CR injection from clusters occurs, respectively, at about 1.0 and 1.5 Gyr after every mergers, and CR injection peaks near to the cluster virial radius (i.e r200). Delayed CR injection peaks found in this study deserve further investigation for possible impact on the evolution of CR-derived observables from galaxy clusters.


2019 ◽  
Vol 628 ◽  
pp. A43 ◽  
Author(s):  
Florian Käfer ◽  
Alexis Finoguenov ◽  
Dominique Eckert ◽  
Jeremy S. Sanders ◽  
Thomas H. Reiprich ◽  
...  

Context. In the framework of the hierarchical model the intra-cluster medium properties of galaxy clusters are tightly linked to structure formation, which makes X-ray surveys well suited for cosmological studies. To constrain cosmological parameters accurately by use of galaxy clusters in current and future X-ray surveys, a better understanding of selection effects related to the detection method of clusters is needed. Aims. We aim at a better understanding of the morphology of galaxy clusters to include corrections between the different core types and covariances with X-ray luminosities in selection functions. In particular, we stress the morphological deviations between a newly described surface brightness profile characterization and a commonly used single β-model. Methods. We investigated a novel approach to describe surface brightness profiles, where the excess cool-core emission in the centers of the galaxy clusters is modeled using wavelet decomposition. Morphological parameters and the residuals were compared to classical single β-models, fitted to the overall surface brightness profiles. Results. Using single β-models to describe the ensemble of overall surface brightness profiles leads on average to a non-zero bias (0.032 ± 0.003) in the outer part of the clusters, that is an approximate 3% systematic difference in the surface brightness at large radii. Furthermore, β-models show a general trend toward underestimating the flux in the outskirts for smaller core radii. Fixing the β parameter to 2/3 doubles the bias and increases the residuals from a single β-model up to more than 40%. Modeling the core region in the fitting procedure reduces the impact of these two effects significantly. In addition, we find a positive scaling between shape parameters and temperature, as well as a negative correlation of approximately −0.4 between extent and luminosity. Conclusion. We demonstrate the caveats in modeling galaxy clusters with single β-models and recommend using them with caution, especially when the systematics are not taken into account. Our non-parametric analysis of the self-similar scaled emission measure profiles indicates no systematic core-type differences of median profiles in the galaxy cluster outskirts.


2018 ◽  
Vol 611 ◽  
pp. A50 ◽  
Author(s):  
Konstantinos Migkas ◽  
Thomas H. Reiprich

We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX–T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l ~ (−15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX–T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be ~2.7σ for ACC and ~3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX–T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions, so this cannot explain the observed differences, either. Constraining Ωm and H0 via the redshift evolution of LX–T and the luminosity distance via the flux–luminosity conversion, we obtain approximately the same deviation amplitudes as for a. It is interesting that the general observed behavior of Ωm for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes such as supernovae Ia. The reason for this behavior remains to be identified.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 70-78
Author(s):  
Daisuke Nagai ◽  
Monique Arnaud ◽  
Sarthak Dasadia ◽  
Michael McDonald ◽  
Ikuyuki Mitsuishi ◽  
...  

AbstractRecent advances in X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. Recent Sunyaev-Zel'dovich (SZ) surveys (ACT, Planck, SPT) have provided new cluster catalogs, significantly expanding coverage of the mass-redshift plane, whileChandraandXMM-NewtonX-ray follow-up programs have improved our understanding of cluster physics and evolution as well as the surveys themselves. However, the current cluster-based cosmological constraints are still limited by uncertainties in cluster astrophysics. In order to exploit the statistical power of the current and upcoming X-ray and microwave cluster surveys, it is critical to improve our understanding of the structure and evolution of the hot X-ray emitting intracluster medium (ICM). In this session, we discussed recent advances in observations and simulations of galaxy clusters, with highlights on (i) the evolution of ICM profiles and scaling relations, (ii) physical processes operating in the outskirts of galaxy clusters, and (iii) impact of mergers on the ICM structure in groups and clusters.


2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2017 ◽  
Vol 13 (S338) ◽  
pp. 53-60
Author(s):  
Aaron Tohuvavohu ◽  
Jamie A. Kennea ◽  

AbstractSwift’s rapid slewing, flexible planning, and multi-wavelength instruments make it the most capable space-based follow-up engine for finding poorly localized sources. During O1 and O2 Swift successfully tiled hundreds of square-degrees of sky in the LVC localization regions, searching for, and identifying, possible X-ray and UV/O transients in the field. Swift made important contributions to the discovery and characterization of the kilonova AT 2017gfo, discovering the UV emission and providing the deepest X-ray upper limits in the first 24 hours after the trigger, strongly constraining the dynamics and geometry of the counterpart. Swift tiled 92% of the galaxy convolved error region down to average X-ray flux sensitivities of 10−12 erg cm−2 s−1, significantly increasing our confidence that AT 2017gfo is indeed the counterpart to GW 170817 and sGRB 170817. However, there remains significant room for improvement of Swift’s follow-up in preparation for O3. This will take the form of both revised observation strategy based on detailed analysis of the results from O2, and significant changes to Swift’s operational capabilities. These improvements are necessary both for maximizing the likelihood that Swift finds a counterpart, and minimizing the impact that follow-up activities have on other Swift science priorities. We outline areas of improvement to the observing strategy itself for optimal tiling of the LVC localization regions. We also discuss ongoing work on operational upgrades that will decrease latency in our response time, and minimize impact on pre-planned observations, while maintaining spacecraft health and safety.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2020 ◽  
Vol 500 (2) ◽  
pp. 2316-2335
Author(s):  
Tiago Castro ◽  
Stefano Borgani ◽  
Klaus Dolag ◽  
Valerio Marra ◽  
Miguel Quartin ◽  
...  

ABSTRACT Luminous matter produces very energetic events, such as active galactic nuclei and supernova explosions, that significantly affect the internal regions of galaxy clusters. Although the current uncertainty in the effect of baryonic physics on cluster statistics is subdominant as compared to other systematics, the picture is likely to change soon as the amount of high-quality data is growing fast, urging the community to keep theoretical systematic uncertainties below the ever-growing statistical precision. In this paper, we study the effect of baryons on galaxy clusters, and their impact on the cosmological applications of clusters, using the magneticum suite of cosmological hydrodynamical simulations. We show that the impact of baryons on the halo mass function can be recast in terms on a variation of the mass of the haloes simulated with pure N-body, when baryonic effects are included. The halo mass function and halo bias are only indirectly affected. Finally, we demonstrate that neglecting baryonic effects on haloes mass function and bias would significantly alter the inference of cosmological parameters from high-sensitivity next-generations surveys of galaxy clusters.


2016 ◽  
Vol 458 (1) ◽  
pp. 379-393 ◽  
Author(s):  
I. Chiu ◽  
A. Saro ◽  
J. Mohr ◽  
S. Desai ◽  
S. Bocquet ◽  
...  

Author(s):  
D. Falceta-Gonçalves ◽  
A. Caproni ◽  
Z. Abraham ◽  
E. M. de Gouveia Dal Pino ◽  
D. M. Teixeira

AbstractSeveral galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misaligned bubbles. Also, X-ray spectra reveal that typically these systems are also able to supress cooling flows, predicted theoretically. The absence of cooling flows in galaxy clusters has been a mistery for many years since numerical simulations and analytical studies suggest that AGN jets are highly energetic, but are unable to redistribute it at all directions. We performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, in which dynamics is coupled to a NFW dark matter gravitational potential. Radiative cooling has been taken into account and the cooling flow problem was studied. We found that precession is responsible for multiple pairs of bubbles, as observed. The misaligned bubbles rise up to scales of tens of kiloparsecs, where the thermal energy released by the jets are redistributed. After ~150 Myrs, the temperature of the gas within the cavities is kept of order of ~107 K, while the denser plasma of the intracluster medium at the central regions reaches T ~ 105 K. The existence of multiple bubbles, at diferent directions, results in an integrated temperature along the line of sight much larger than the simulations of non-precessing jets. This result is in agreement with the observations. The simulations reveal that the cooling flows cessed ~50–70 Myr after the AGN jets are started.


Sign in / Sign up

Export Citation Format

Share Document