scholarly journals Fast spectral fitting of hard X-ray bremsstrahlung from truncated power-law electron spectra

2008 ◽  
Vol 486 (3) ◽  
pp. 1023-1029 ◽  
Author(s):  
J. C. Brown ◽  
J. Kašparová ◽  
A. M. Massone ◽  
M. Piana
1997 ◽  
Vol 163 ◽  
pp. 709-710 ◽  
Author(s):  
J. Greiner ◽  
B.A. Harmon ◽  
W.S. Paciesas ◽  
E.H. Morgan ◽  
R.A. Remillard

After the discovery of GRS 1915+105 (Castro-Tirado et al. 1992) we obtained pointed ROSAT observations every six months (12 until now). The flux in the ROSAT (0.1–2.4 keV) band is strikingly different from the simultaneous BATSE (25–50 keV) flux which was obtained by integrating the best fit power law (Fig. 1). Motivated by the different intensity evolution in the soft and hard X-ray band we have selected BATSE monitoring data collected simultaneously to ROSATdata and performed joint spectral fitting with XSPEC. As a result, we never got an acceptable fit (see Fig. 2): The BATSE power law (upper dotted line) is too steep to match the ROSAT band, and even allowing for an increased absorbing column (lower dotted line) does not solve the problem. Alternatively, neither a thermal bremsstrahlung fit (solid line) nor a power law fit (lower dash-dot line) to the ROSAT data match the BATSE flux. The upper dash-dot line is a -2.5 powerlaw which would match the BATSE data while giving too much 1–2 keV emission. A similar, but less stringent result is obtained when folding the best fit BATSE power law models with the HRI detector response to compare the expected count rate with the observed one. We therefore conclude that the spectrum during all simultaneous ROSAT/BATSE observations seemingly consists of two different spectral components.


1998 ◽  
Vol 188 ◽  
pp. 422-423
Author(s):  
K. M. Leighly ◽  
M. Matsuoka ◽  
M. Cappi ◽  
T. Mihara

We report investigation of the iron Kα line in a long (100 ks) ASCA observation of NGC 4151. This observation offers unprecedented good statistics; however, the situation is complicated by the fact that the absorption in NGC 4151 is complex and therefore it is difficult to deconvolve a broad iron line from the power law strongly curved by the absorption. Preliminary spectral fitting with a dual absorber model, using updated abundances and response matrices, and also allowing for iron overabundance, revealed significant spectral residuals around 5 keV which could be modeled with a broad Gaussian. This profile resembles the line characteristic of emission from a relativistic accretion disk; however, that model fit the spectra poorly. Since the energy of the narrow core is nearly 6.4 keV, the orientation of the accretion disk should be nearly face-on, because if the inclination were higher, the blue horn should be shifted to higher energies. If the orientation is face-on, there should be no emission blueward of 6.4 keV; however, a small blue wing as well as a long red wing are present in the residuals.


1989 ◽  
Vol 104 (1) ◽  
pp. 95-103
Author(s):  
Wolfgang Dröge ◽  
Peter Meyer ◽  
Paul Evenson ◽  
Dan Moses

AbstractFor the period September 1978 to December 1982 we have identified 55 solar flare particle events for which our instruments on board the ISEE-3 (ICE) spacecraft detected electrons above 10 MeV. Combining our data with those from the ULEWAT spectrometer (MPI Garching and University of Maryland) electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (< 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (> 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.


1989 ◽  
Vol 134 ◽  
pp. 197-198
Author(s):  
D. M. Worrall ◽  
B. J. Wilkes

Quasars with similar core-compact radio properties can be classified by their differences at optical and infrared frequencies. Their X-ray properties might be expected to be similar if the synchrotron self-Compton mechanism relates their radio and X-ray emission. We have compared the 0.2–3.5 keV mean power-law energy spectral indices, , for 4 quasar classes: 12 Highly Polarized QSOs (HPQs), 19 Flat Radio Spectrum, core-compact, low-polarization, QSOs (FRS QSOs), 24 radio-selected BL Lac objects, and 7 X-ray-selected BL Lac objects.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


2016 ◽  
Vol 12 (S324) ◽  
pp. 123-126
Author(s):  
Richard Saxton ◽  
S. Komossa ◽  
Andrew Read ◽  
Paulina Lira ◽  
Kate D. Alexander ◽  
...  

AbstractXMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t−5/3 but vary greatly in the early phase.


2013 ◽  
Vol 13 (12) ◽  
pp. 1482-1492 ◽  
Author(s):  
You-Ping Li ◽  
Wei-Qun Gan ◽  
Li Feng ◽  
Si-Ming Liu ◽  
A. Struminsky

2008 ◽  
Author(s):  
Bin-Bin Zhang ◽  
Bing Zhang ◽  
En-Wei Liang ◽  
Xiang-Yu Wang ◽  
Yong-Feng Huang ◽  
...  

1968 ◽  
Vol 1 ◽  
pp. 202-205
Author(s):  
Laurence E. Peterson

In this paper we wish to present briefly the latest results which have been obtained on the hard X-ray spectra of two strong sources in the Northern skies. These observations, which have been discussed in detail previously (Peterson et al., 1967), were made from balloons launched at Palestine, Texas, to 3 gm/cm2 atmospheric depth during September 1966. The Crab Nebula and the Cygnus XR-1 were observed to have a differential number power law spectra with an index of about –2 over the 20–200 keV range. Both sources have the same intensity within about 10%. The Crab Nebula has been observed on two occasions, one year apart, and showed no change in intensity over this range at about a 5% significance level.


Sign in / Sign up

Export Citation Format

Share Document