scholarly journals AN INTRINSIC CORRELATION BETWEEN GRB OPTICAL/UV AFTERGLOW BRIGHTNESS AND DECAY RATE

Author(s):  
S. R. Oates ◽  
M. J. Page ◽  
M. De Pasquale ◽  
P. Schady ◽  
A. A. Breeveld ◽  
...  
2013 ◽  
Vol 61 ◽  
pp. 211-215
Author(s):  
S.R. Oates ◽  
M.J. Page ◽  
M. De Pasquale ◽  
P. Schady ◽  
A.A. Breeveld ◽  
...  

Author(s):  
S. R. Oates ◽  
M. J. Page ◽  
M. De Pasquale ◽  
P. Schady ◽  
A. A. Breeveld ◽  
...  

1995 ◽  
Vol 32 (2) ◽  
pp. 45-52 ◽  
Author(s):  
H. Z. Sarikaya ◽  
A. M. Saatçi

Total coliform bacteria have been chosen as the indicator organism. Coliform die-away experiments have been carried out in unpolluted sea water samples collected at about 100 m off the coastline and under controlled environmental conditions. The samples were transformed into one litre clean glass beakers which were kept at constant temperature and were exposed to the solar radiation. The membrane filter technique was used for the coliform analysis. The temperature ranged from 20 to 40° C and the dilution ratios ranged from 1/50 to 1/200. Coliform decay rate in the light has been expressed as the summation of the coliform decay rate in the dark and the decay rate due to solar radiation. The solar radiation required for 90 percent coliform removal has been found to range from 17 cal/cm2 to 40 cal/cm2 within the temperature range of 25 to 30° C. Applying the linear regression analysis two different equations have been given for the high (I>10 cal/cm2.hour) and low solar intensity ranges in order to determine the coliform decay rate constant as a function of the solar intensity. T-90 values in the light have been found to follow log-normal distribution with a median T-90 value of 32 minutes. The corresponding T-90 values in the dark were found to be 70-80 times longer. Coliform decay rate in the dark has been correlated with the temperature.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Almendra Aragón ◽  
Ramón Bécar ◽  
P. A. González ◽  
Yerko Vásquez

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Kaustav Chakraborty ◽  
Debajyoti Dutta ◽  
Srubabati Goswami ◽  
Dipyaman Pramanik

Abstract We study the physics potential of the long-baseline experiments T2HK, T2HKK and ESSνSB in the context of invisible neutrino decay. We consider normal mass ordering and assume the state ν3 as unstable, decaying into sterile states during the flight and obtain constraints on the neutrino decay lifetime (τ3). We find that T2HK, T2HKK and ESSνSB are sensitive to the decay-rate of ν3 for τ3/m3 ≤ 2.72 × 10−11s/eV, τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 2.43 × 10−11s/eV respectively at 3σ C.L. We compare and contrast the sensitivities of the three experiments and specially investigate the role played by the mixing angle θ23. It is seen that for experiments with flux peak near the second oscillation maxima, the poorer sensitivity to θ23 results in weaker constraints on the decay lifetime. Although, T2HKK has one detector close to the second oscillation maxima, having another detector at the first oscillation maxima results in superior sensitivity to decay. In addition, we find a synergy between the two baselines of the T2HKK experiment which helps in giving a better sensitivity to decay for θ23 in the higher octant. We discuss the octant sensitivity in presence of decay and show that there is an enhancement in sensitivity which occurs due to the contribution from the survival probability Pμμ is more pronounced for the experiments at the second oscillation maxima. We also obtain the combined sensitivity of T2HK+ESSνSB and T2HKK+ESSνSB as τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 5.53 × 10−11s/eV respectively at 3σ C.L.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 394
Author(s):  
Cheng-Han Li ◽  
Chun-Hung Hsieh ◽  
Cheng-Chu Hung ◽  
Ching-Wei Cheng

After completing the production of preserved eggs, traditionally, the degree of gelling is judged by allowing workers to tap the preserved eggs with their fingers and sense the resulting oscillations. The amount of oscillation is used for the quality classification. This traditional method produces varying results owing to the differences in the sensitivity of the individual workers, who are not objective. In this study, dielectric detection technology was used to classify the preserved eggs nondestructively. The impedance in the frequency range of 2–300 kHz was resolved into resistance and reactance, and was plotted on a Nyquist diagram. Next, the diagram curve was fitted in order to obtain the equivalent circuit, and the difference in the compositions of the equivalent circuits corresponding to gelled and non-gelled preserved eggs was analyzed. A preserved egg can be considered an RLC series circuit, and its decay rate is consistent with the decay rate given by mechanical vibration theory. The Nyquist diagrams for the resistance and reactance of preserved eggs clearly showed that the resistance and reactance of gelled and non-gelled eggs were quite different, and the classification of the eggs was performed using Bayesian network (BN). The results showed that a BN classifier with two variables, i.e., resistance and reactance, can be used to classify preserved eggs as gelled or non-gelled, with an accuracy of 81.0% and a kappa value of 0.62. Thus, a BN classifier based on resistance and reactance demonstrates the ability to classify the quality of preserved egg gel. This research provides a nondestructive method for the inspection of the quality of preserved egg gel, and provides a theoretical basis for the development of an automated preserved egg inspection system that can be used as the scientific basis for the determination of the quality of preserved eggs.


Sign in / Sign up

Export Citation Format

Share Document