scholarly journals Performance calculations of thermoelectric module p-type leg composed of (Bi2Te3)x(Sb2Te3)1-x

2016 ◽  
Vol 10 ◽  
pp. 00062
Author(s):  
Michał Musiał ◽  
Marcin Borcuch ◽  
Krzysztof Wojciechowski
Keyword(s):  
2021 ◽  
pp. 2001003
Author(s):  
Zuoxiang Xie ◽  
Kai Feng ◽  
Yan Xiong ◽  
Xu Chen ◽  
Yudong Liang ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 4503-4507
Author(s):  
Seong Min Yun ◽  
Injoon Son ◽  
Sung Hwa Bae

In thermoelectric modules, multiple n-type and p-type thermoelectric elements are electrically connected in series on a Cu electrode that is bonded to a ceramic substrate. Defects in the bond between the thermoelectric elements and the Cu electrode could impact the performance of the entire thermoelectric module. This study investigated the effect of plating layers on the bonding strength of p-type Bi–Te thermoelectric elements. Ni and Pd electroplating was applied to Bi–Te thermoelectric elements; further, electroless Ni–P immersion gold (ENIG) plating was applied to Cu electrodes bonded to ceramic substrates. Forming a Pd/Ni electroplating layer on the surface of thermoelectric elements and an ENIG plating layer on the surface of the Cu electrode improved the bonding strength by approximately 3.5 times. When the Pd/Ni and ENIG plating layers were formed on Bi–Te elements and Cu substrates, respectively, the solderability greatly increased; as the solderability increased, the thickness of the diffusion layer formed with the solder layer increased. The improved bonding strength of the Pd/Ni plated thermoelectric element bonded on the ENIG plated substrate is attributed to the enhanced solderability due to the rapid inter-diffusion of Pd and Au into the solder layer and the formation of a stable and non-defected solder reaction interface layer.


2011 ◽  
Vol 110-116 ◽  
pp. 4101-4105 ◽  
Author(s):  
Tosawat Seetawan

Fossil fuel is the main energy resources of the world. About 80-90% of its primary energy need to supply by oil, coal, natural gas, and oil shale [1]. These energy resources will also be of importance in the future but non-renewable and cause problems to the environment as a result of their relatively high amount of carbon dioxide (CO2), carbon monoxide (CO), and other environmentally harmful emissions. We are investigating to look for alternative energy resources which are clean, safe, and long-term reliable. Thermoelectricity is one of the renewable energy resources that has been widely investigated and is expected to be feasible in the near future. Moreover, it is a clean energy generation, since it can directly convert heat to electrical energy by using non-polluting thermoelectric devices. These are reasons for the growing interest in further research and development of the thermoelectric technology. The search for new thermoelectric materials is important that the transition metal oxides were interested such as p-type Ca3Co4O9 [2-7] and n-type CaMnO3 [8-12]. There have been synthesized using different techniques in the form of powder and bulk. However, the doped metals have been expected to be one of the candidates for good thermoelectric materials, including thermoelectric module consists of two or more materials of p-type and n-type [13-15]. Recently, the thermoelectric module is also being used as the thermoelectric generators, thermoelectric coolers, etc. [16-17].


2012 ◽  
Vol 622-623 ◽  
pp. 726-733 ◽  
Author(s):  
Weerasak Somkhunthot ◽  
Nuwat Pimpabute ◽  
Tosawat Seetawan

Thin films thermoelectric module fabricated by pulsed-dc magnetron sputtering system using Ca3Co4O9(p-type) and ZnO (n-type) targets of 60 mm diameter and 2.5 mm thickness, which were made from powder precursor, and obtained by solid state reaction. Thin films of p-Ca-Co-O (Seebeck coefficient = 143.85 µV/K, electrical resistivity = 4.80 mΩm, power factor = 4.31 µW/m K2) and n-ZnO (Seebeck coefficient =229.24 µV/K, electrical resistivity = 5.93 mΩm, power factor = 8.86 µW/m K2) were used to make a thermoelectric module, which consist of four pairs of legs connected by copper electrodes (0.5 mm thickness, 3.0 mm width, and 3.0-8.0 mm length). Each leg is 3.0 mm width, 20.0 mm length, and 0.44 µm thickness on a glass substrate of 1.0 mm thickness in dimension 25.0x50.0 mm2. For preliminary test, a module was used to thermoelectric power generation. It was found that the open circuit voltage increased with increasing temperature difference from 3 mV at 5 K up to 20 mV at 78 K. The internal resistance of a module reached a value of 14.52 MΩ. This test indicated that a module can be generated the electrical power. Therefore, it can be used as an important platform for further thin films thermoelectric module research.


2008 ◽  
Vol 55-57 ◽  
pp. 813-816
Author(s):  
T. Kumpeerapun ◽  
Hubert Scherrer ◽  
V. Kosalathip ◽  
I. Sripichai

The short-time-consumption melting and hot pressing processes were used to synthesize n-type and p-type Bi-Sb-Te thermoelectric materials. The synthesis materials were characterized and used for the module fabrication. The aluminium substrate was used instead of alumina substrate because it is easy to cut and to avoid fragility of the module. The performance of 20 x 20 mm2 prototype thermoelectric module consists of 7 pairs of n-type and p-type Bi-Sb-Te thermoelectric materials was investigated and then compared its performance to 40 mm x 40 mm commercial module. The output power densities as a function of temperature difference across the devices and open circuit voltages from the module are reported.


Author(s):  
Christopher A. Howells ◽  
Cynthia Watkins ◽  
Rama Venkatasubramanian

We have investigated the power generation characteristics of thermoelectric devices made from high Figure of Merit p-type Bi2Te3/Sb2Te3 and n-type Bi2Te3/Bi2Te2.7Se0.3 superlattice materials. The Figure of Merit, ZT (where Z is a measure of the material’s thermoelectric properties and T is the absolute temperature) of the p-type and n-type superlattices were each measured at 300K and found to be 2.4 and 1.2 respectively [1]. Sixteen p-n couples were developed using these superlattice materials and they were configured into a 4×4 thermoelectric module. The electrical measurements (Current, Voltage, and Power) of the 4×4 superlattice thermoelectric modules under various resistive loads and temperature differentials in a standard pressure environment are presented and from these, we have determined the peak power and internal resistance of the module. We also discuss other opportunities to further investigate this device as well as its suitability for power applications.


2004 ◽  
Vol 51 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Masataka Kubo ◽  
Takshi Itoh ◽  
Kohei Tokuda ◽  
Jiayi Shan ◽  
Kuniyuki Kitagawa
Keyword(s):  

Author(s):  
Daniel Sanin-Villa ◽  
Oscar D. Monsalve-Cifuentes ◽  
Jorge Sierra Del Rio

In 2020 the COVID-19 pandemic has suddenly stopped society and changed human interaction. In this work, a thermoelectric generator wearable device for early fever detection symptoms is presented as a possible solution to avoid higher propagation of this disease. To identify a possible fever symptom, numerical and parametric simulations are developed using a highquality-refined hexahedral mesh. At first, a 2-pair-leg thermoelectric module has undergone simulations to establish temperature conditions, open-circuit voltage, and power output generation; and secondly, these previous results are extrapolated for a larger thermoelectric module containing 28 pair-leg of N-P type material. The numerical study shows that a maximum value of electrical power of 60.70 mW was reached for 28-pair-leg N-P type thermocouples under a constant temperature difference of 20 K.


2022 ◽  
Vol 120 (1) ◽  
pp. 013501
Author(s):  
Raju Chetty ◽  
Priyanka Jood ◽  
Masayuki Murata ◽  
Koichiro Suekuni ◽  
Michihiro Ohta

Sign in / Sign up

Export Citation Format

Share Document