scholarly journals Heating of external surfaces by means of heat pumps

2018 ◽  
Vol 44 ◽  
pp. 00128
Author(s):  
Krzysztof Nowak

In winter we are forced to eliminate or mitigate the disadvantages associated with the accumulation of snow and ice on sidewalks, steps, driveways, roofs, squares, sports fields. There are many ways to remove snow and ice from the considered surfaces, including chemical, mechanical or use of a heating installation. Mechanical or manual methods do not always allow to completely remove snow and ice, while chemicals often have a negative impact on the environment. The most effective is the use of an electric or liquid heating installation. The article presents the results of technical analysis for a maneuver area heating system for driving training lesson using a heat pump with a ground heat exchanger, as well as financial analysis of its application in the established conditions. The literature lacks information on this subject, so it was interesting to investigate whether the proposed installation is technically and economically feasible.

Author(s):  
Mihail Sit ◽  
◽  
Anatoliy Juravliov ◽  

The work is devoted to centralized heat supply systems based on CHP plants and the use with them heat pumps (HP) on carbon dioxide as refrigerant. Heat pumps are used in heat supply systems for buildings and use the heat of the outside air and, at the same time, the heat of the return network water (WWR) as a source of low-grade heat (LHP). The aim of the study is to develop a structural diagram of such a heat pump, where the outside air is heated by a heat exchanger installed in the return water line of the heating system, to develop a hydraulic circuit of a heat pump taking into account the law of regulation of the building heating system, to develop an algorithm for controlling the operating modes of the so-called balancing heat exchanger installed after gas cooler and internal heat exchanger of the heat pump. The most significant results were the hydraulic circuit of the heat pump, the aerodynamic circuit of the air supply path to the heat pump evaporator, the balancing heat exchanger control system, taking into account the requirement to ensure the operation of the control valve in a single-phase flow. The significance of the results obtained consisted in obtaining the dependences between the CO temperature graph and the parameters of the thermodynamic cycle of the heat pump, which ensured the operation of the control valve of the heat pump in a single-phase environment.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6530
Author(s):  
Krzysztof Nowak ◽  
Sławomir Rabczak

In winter, for our own safety, as well as for the comfort of the user, we are obliged to remove or mitigate the defects related to the accumulation of snow and ice on flat surfaces, such as: pavements, stairs, driveways, parking lots, roofs, squares, or sports fields. Snow and ice from these surfaces can be removed by a variety of methods. Chemical, mechanical, or heating methods are most often used. Mechanical and manual methods cannot always be used. They also often do not allow the complete removal of snow and ice from the surface. In chemical methods, the chemicals used can have a negative impact on the environment and the surface itself. Heating external surfaces using electric heating cables or liquid-filled pipes is one of the safest and most effective ways to remove snow and ice from the available methods. The article presents a technical concept of a car park heating system with the use of various heating systems. The main thesis of the work is the possibility of using heating systems to maintain the quality of external parking spaces in winter. The authors tried to prove that it is possible to use a number of heating systems based on commonly known energy carriers for this purpose. The concept was made for the conditions prevailing in Poland. The systems were compared in financial and ecological terms. The following systems were analyzed: electric heating, heating with the use of a heat pump with a vertical ground heat exchanger, and liquid heating with various heat sources (including heat from the district heating network, hard coal boiler, biomass boiler, fuel oil boiler, natural gas boiler). From a cognitive point of view, it was interesting to examine whether the proposed installation with a heat pump is technically feasible and economically and ecologically justified.


2013 ◽  
Vol 732-733 ◽  
pp. 103-108 ◽  
Author(s):  
Han Byul Kang ◽  
Seok Yoon ◽  
Gyu Hyun Go ◽  
Seung Rae Lee

The Ground-Coupled or Source Heat Pump (GCHP/GSHP) system is increasingly being considered as an alternative to traditional cooling/heating system because it can reduce the emission of greenhouse gases. The GCHP/GSHP system uses sustainable ground temperature to emit heat during the summer and to extract heat during the winter. It is a ubiquitous system because it can be used at any time or place and semi-permanent energy. The geothermal system is composed of Ground Heat Exchanger (GHE), heat pump and load facilities. The GHE is embedded in a borehole, which is made up of GHE and grout. The borehole thermal resistance is the most important parameter in designing the geothermal system because it shows the quantity of heat transfer in the borehole. There are many methods to estimate the borehole thermal resistance. Thermal Performance Tests (TPTs) were conducted to directly measure the borehole thermal resistance of several kinds of GHEs. Then the experiment results and analytical results were compared in order to select the most accurate methods to evaluate the borehole thermal resistance.


A 21 kW ground source heat pump (GSHP) operating since 2013 in Alaska is described in this paper. Six years of successful operation in an extreme climate and measured performance data from 2013 to 2017 prove the viability of heat pumps for extreme cold regions. Summary of performance evaluation data such as monthly electric energy use and cost, savings of the heat pump system compared to the cost of heating oil, energy extracted from the ground, heat delivered to building are tabulated by months. The coefficient of performance (COP) of the heat pump is calculated from the experimental data, which show the COP to vary from a maximum value of 4.15 to a minimum value of 2.34 depending on the heating load of the month and the ground temperature. Cost comparison shows savings by heat pump over regular heating oil boilers of 80% efficiency. In cold regions it is of concern that GSHP can create frozen ground or permafrost around the ground heat exchanger coil by extracting too much heat from the ground. A finite element heat conduction simulation performed over the ground heat exchanger coil spanning over a 30-year period shows that small volumes of frozen ground form around the coil each season, but they melt away during the summer by the recharge of heat from the solar heat gain. The mechanical system of the heat pump, sensors for measurements and cost of the system components are presented, which would be valuable to designers implementing heat pumps in various locations of the world.


2010 ◽  
Vol 31 (4) ◽  
pp. 93-110 ◽  
Author(s):  
Małgorzata Hanuszkiewicz-Drapała ◽  
Jan Składzień

Heating system with vapour compressor heat pump and vertical U-tube ground heat exchangerIn the paper a heating system with a vapour compressor heat pump and vertical U-tube ground heat exchanger for small residential house is considered. A mathematical model of the system: heated object - vapour compressor heat pump - ground heat exchanger is presented shortly. The system investigated is equipped, apart from the heat pump, with the additional conventional source of heat. The processes taking place in the analyzed system are of unsteady character. The model consists of three elements; the first containing the calculation model of the space to be heated, the second - the vertical U-tube ground heat exchanger with the adjoining area of the ground. The equations for the elements of vapour compressor heat pump form the third element of the general model. The period of one heating season is taken into consideration. The results of calculations for two variants of the ground heat exchanger are presented and compared. These results concern variable in time parameters at particular points of the system and energy consumption during the heating season. This paper presents the mutual influence of the ground heat exchanger subsystem, elements of vapour compressor heat pump and heated space.


Author(s):  
M.K. Bezrodnyi ◽  
N.A. Prytula ◽  
M.A. Gobova

The method of determination of optimal working conditions of vertical ground heat exchanger for heat pump low temperature water heating system, providing minimum energy cost for heat production is presented in this article. It was determined that there is an optimum speed of a heat carrier to which minimum total cost of electricity for heating system in a whole corresponds when using vertical probes for heat pump heating system. The correlation between the characteristics of vertical ground heat exchanger (depth of the well, the intensity of selection of heat from the soil pipe diameter, the velocity of a heat carrier) in its optimal working conditions was found. It is shown that the optimum velocity of a heat carrier in the lower circuit depends on the depth of the well, the heat exchanger tube diameter, and is almost independent of temperature conditions works of heat pump systems. It is found that the higher velocity observed at the beginning of the heating period in view of energy storage in the ground. Optimum coolant velocity should decrease until the end of the heating season to ensure minimum specific energy expenditure at HPS. Also noted that an optimum velocity increases with increasing depth of the well and with decreasing diameter of the heat exchanger tube. The established correlation may be used when determining the optimum operating conditions of the vertical ground heat pump heat exchanger low-temperature heating systems with a plan to maximize their energy efficiency. Bibl. 8, Fig. 7.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Author(s):  
Xiao Wang ◽  
Lin Fu ◽  
Xiling Zhao ◽  
Hua Liu

In recent years, with the continuous urban expansion, the central heating sources are commonly insufficient in the areas of Northern China. Besides, the increasing heat transfer temperature difference results in more and more exergy loss between the primary heat network and the secondary heat network. This paper introduces a new central heating system which combines the urban heat network with geothermal energy (CHSCHNGE). In this system, the absorption heat exchange unit, which is composed of an absorption heat pump and a water to water heat exchanger, is as alternative to the conventional water to water heat exchanger at the heat exchange station, and the doing work ability of the primary heat network is utilized to drive the absorption heat pump to extract the shallow geothermal energy. In this way, the heat supply ability of the system will be increased with fewer additional energy consumptions. Since the water after driving the absorption heat pump has high temperature, it can continue to heat the supply water coming from the absorption heat pump. As a result, the water of the primary heat network will be stepped cooled and the exergy loss will be reduced. In this study, the performance of the system is simulated based on the mathematical models of the heat source, the absorption heat exchange unit, the ground heat exchanger and the room. The thermodynamic analyses are performed for three systems and the energy efficiency and exergy efficiency are compared. The results show that (a) the COP of the absorption heat exchange unit is 1.25 and the heating capacity of the system increases by 25%, which can effectively reduce the requirements of central heating sources; (b) the PER of the system increases 14.4% more than that of the conventional co-generation central heating system and 54.1% more than that of the ground source heat pump system; (c) the exergy efficiency of the CHSCHNGE is 17.6% higher than that of the conventional co-generation central heating system and 45.6% higher than that of the ground source heat pump system.


Sign in / Sign up

Export Citation Format

Share Document