scholarly journals The use of artificial neural networks for analyzing the sensitivity of a retention tank

2018 ◽  
Vol 45 ◽  
pp. 00066 ◽  
Author(s):  
Kamil Pochwat

Designing retention facilities is a complex engineering process that requires the collection of the detailed hydrological data of a catchment and hydraulic sewerage system. The acquired data are necessary to prepare a model of the retention tank in appropriate software for hydrodynamic modelling. The article shows the results of tests concerning the analysis of the sensitivity of a sewerage model of a rainwater retention tank which may be implemented in this software. The results of tests allowed determining the impact of the individual hydraulic characteristics of the catchment and the sewerage system on the required retention capacity of a tank. A planned analysis is performed based on artificial neural networks and the required data are acquired by hydrodynamic simulations in SWMM 5.1.

2018 ◽  
Vol 7 (3) ◽  
pp. 157-161
Author(s):  
Allag Fateh ◽  
Saddek Bouharati ◽  
Lamri Tedjar ◽  
Mohamed Fenni

Because of their fixed life and wide distribution, plants are the first victims of air pollution. The atmosphere is considered polluted when the increase of the rate of certain components causes harmful effects on the different constituents of the ecosystems. The study of the flow of air near a polluting source (cement plant in our case), allows to predict its impact on the surrounding plant ecosystem. Different factors are to be considered. The chemical composition of the air, the climatic conditions, and the impacted plant species are complex parameters to be analyzed using conventional mathematical methods. In this study, we propose a system based on artificial neural networks. Since artificial neural networks have the capacity to treat different complex parameters, their application in this domain is adequate. The proposed system makes it possible to match the input and output spaces. The variables that constitute the input space are the chemical composition, the concentration of the latter in the rainwater, their duration of deposition on the leaves and stems, the climatic conditions characterizing the environment, as well as the species of plant studied. The output variable expresses the rate of degradation of this species under the effect of pollution. Learning the system makes it possible to establish the transfer function and thus predict the impact of pollutants on the vegetation.


Author(s):  
EMILIO CORCHADO ◽  
COLIN FYFE

We consider the difficult problem of identification of independent causes from a mixture of them when these causes interfere with one another in a particular manner: those considered are visual inputs to a neural network system which are created by independent underlying causes which may occlude each other. The prototypical problem in this area is a mixture of horizontal and vertical bars in which each horizontal bar interferes with the representation of each vertical bar and vice versa. Previous researchers have developed artificial neural networks which can identify the individual causes; we seek to go further in that we create artificial neural networks which identify all the horizontal bars from only such a mixture. This task is a necessary precursor to the development of the concept of "horizontal" or "vertical".


2019 ◽  
Vol 71 ◽  
pp. 01003
Author(s):  
J. Vrbka ◽  
J. Horák ◽  
V. Machová

The objective of this contribution is to prepare a methodology of using artificial neural networks for equalizing time series when considering seasonal fluctuations on the example of the Czech Republic import from the People´s Republic of China. If we focus on the relation of neural networks and time series, it is possible to state that both the purpose of time series themselves and the nature of all the data are what matters. The purpose of neural networks is to record the process of time series and to forecast individual data points in the best possible way. From the discussion part it follows that adding other variables significantly improves the quality of the equalized time series. Not only the performance of the networks is very high, but the individual MLP networks are also able to capture the seasonal fluctuations in the development of the monitored variable, which is the CR import from the PRC.


2018 ◽  
Vol 235 ◽  
pp. 394-403 ◽  
Author(s):  
Gabriela Polezer ◽  
Yara S. Tadano ◽  
Hugo V. Siqueira ◽  
Ana F.L. Godoi ◽  
Carlos I. Yamamoto ◽  
...  

2003 ◽  
Author(s):  
Hamid Hadim ◽  
Tohru Suwa

In this manuscript a systematic multidisciplinary electronic packaging design and optimization methodology based on the artificial neural networks technique is presented. This method is applied to a Ball Grid Array (BGA) package design as an example. Multidisciplinary criteria including thermal, structural (thermal strain), electromagnetic leakage, and cost are optimized simultaneously. A simplified routability criterion is also considered as a constraint. The artificial neural networks technique is used for thermal and structural performance predictions. Large calculation time reduction is achieved using the artificial neural networks, which also provide enough information to specify the individual weights for each design discipline within the objective function used for optimization. This methodology is able to provide the designers a clear view of the design trade-offs, which are represented in the objective function using various design parameters. This methodology can be applied to any electronic product design at any packaging level.


2017 ◽  
Vol 14 (18) ◽  
pp. 4101-4124 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Bin Fang ◽  
Alexandra G. Konings ◽  
Filipe Aires ◽  
Julia K. Green ◽  
...  

Abstract. A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1°  ×  1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.


Author(s):  
Matheus Adler Soares Pinto ◽  
Bruno Rocha Gomes ◽  
João Pedro Moreno Vale ◽  
André Luis Rolim de Castro Silva ◽  
Joadson Teixeira Castro das Chagas ◽  
...  

Epilepsy is a neurological disorder, where there is a cluster of brain cells that behave in a hyperexcitable manner, the individual can promote injuries, trauma or, in more severe cases, sudden death. Electroencephalogram (EEG) is the most used way to detect epileptic seizures. Therefore, more simplified methods of analysis of the EEG can help in the diagnosis and treatment of these individuals more quickly. In this study, we extracted pertinent EEG characteristics to assess the epileptic seizure period. We use Perceptron Multilayer artificial neural networks to classify the period of the crisis, obtaining a more efficient diagnosis. The multilayer neural network obtained an accuracy of 98%. Thus, the strategy of extracting characteristics and the architecture of the assigned network were sufficient for a rapid and accurate diagnosis of epilepsy.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1832
Author(s):  
Wojciech Sitek ◽  
Jacek Trzaska

Artificial neural networks are an effective and frequently used modelling method in regression and classification tasks in the area of steels and metal alloys. New publications show examples of the use of artificial neural networks in this area, which appear regularly. The paper presents an overview of these publications. Attention was paid to critical issues related to the design of artificial neural networks. There have been presented our suggestions regarding the individual stages of creating and evaluating neural models. Among other things, attention was paid to the vital role of the dataset, which is used to train and test the neural network and its relationship to the artificial neural network topology. Examples of approaches to designing neural networks by other researchers in this area are presented.


2016 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Bin Fang ◽  
Alexandra G. Konings ◽  
Julia K. Green ◽  
Jana Kolassa ◽  
...  

Abstract. A new global estimate of surface turbulent fluxes, including latent heat flux (LE), sensible heat flux (H), and gross primary production (GPP) is developed using remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. The approach uses an artificial neural network (ANN) with a Bayesian perspective to learn from the training datasets: a target input dataset is generated using three independent data sources and a triple collocation (TC) algorithm to define a prior distribution. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides surface turbulent fluxes from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are validated using FLUXNET tower measurements across various climates and conditions. WECANN performs well in most cases and is strongly constrained by SIF information. The impact of SIF on WECANN retrievals is evaluated by removing it from the input dataset of the ANN, and it shows that SIF has significant influence, especially in regions of high vegetation cover and in humid conditions. When compared to in situ eddy covariance observations, WECANN typically outperforms other estimates, particularly for sensible and latent heat fluxes.


Sign in / Sign up

Export Citation Format

Share Document