scholarly journals Soil typologies in the wine-growing areas of Mallorca, with special emphasis on available water content.

2018 ◽  
Vol 50 ◽  
pp. 01011
Author(s):  
Joan Rossello ◽  
José M. Escalona ◽  
Josep Cifre ◽  
Jaume Vadell ◽  
Hipólito Medrano

Under the conditions of the semi-arid Mediterranean climate, soil depth and water retention capacity are the most important characteristics of the soil related to the quality of the wines. The availability of water will mark the development of the vines and the development and maturity of the grape. The characterization and agronomic evaluation of the soil has been carried out from the excavation of 38 soil pits in the main wine growing areas of Mallorca. Cambisols are the most predominant soil typology followed by Cambisols, Regosols and Luvisols. The water classification of the soils has been made according to the maximum water availability (useful water) in 2 m of soil (mm water / 2 m soil). The proposed levels are: very low (<120 mm), low (120-180 mm), Medium (180-240 mm), High (240-300 mm) and Very high> 300 (mm). The most abundant soil type we find that 47% have high soil water availability, 27% very high, 14% normal and 14% low. Establishing an area based on available water content is a tool that allows us to adjust the selection of the most suitable grape varieties in each soil, thus taking advantage more efficiently of the potential of each type of grape.

2021 ◽  
Vol 14 (19) ◽  
Author(s):  
José A. Sillero-Medina ◽  
Jesús Rodrigo-Comino ◽  
José D. Ruiz-Sinoga

AbstractAssessing soil hydrological conditions can provide essential information for understanding the environmental processes that affect ecosystem services and, particularly in the context of ongoing climate change. This is key in areas affected by water scarcity such as the Mediterranean belt. Therefore, the main goals of this research are (i) to assess the main rainfall dynamics and trends of some representative hotspots along with southern Spain and (ii) to determine the impact on the soil available water content (AWC) over the last two decades. An analysis of daily precipitation and soil hydrological conditions was combined with soil sampling (543) and laboratory analyses to evaluate the properties related to the soil infiltration and retention capacity. The results show that the organic factors control soil properties and their hydrodynamics in southern Spain. Furthermore, a general declining trend in soil water availability is observed over the last two decades. This is more extreme in arid and semi-arid areas, where there have been several years in the last decade with more than 200 days without the available water content. Moreover, in these areas, heavy rainfall during specific moments of the year is the key factor that manifests a greater incidence in areas with steeper slopes, which in turn, also conditions the biological factors and the hydrodynamics of the soil. In short, in the context of climate change, the analysis of soil hydrological dynamics could be used to identify biodiversity thresholds in the Mediterranean area and even to detect phenological changes in specific plant species.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Allophanic soils are dark-colored young soils derived mainly from volcanic ash. These soils typically have a low bulk density (< 0.9 Mg/m3), a high water retention capacity (100% by weight at field capacity), and contain predominantly allophanes, imogolite, halloysite, and amorphous Al silicates in the clay fraction. These soils are found in small, restricted areas with volcanic activity. Worldwide, there are about 120 million ha of allophanic soils, which is about 1% of the Earth's ice-free land surface. In tropical regions, allophanic soils are among the most productive and intensively used agricultural soils. They occur in the Philippines, Indonesia, Papua New Guinea, the Caribbean and South Pacific islands, East Africa, Central America, and the Andean rim of South America. Allophanic soils are primarily Andisols and andic Inceptisols, Entisols, Mollisols, and Alfisols according to the Soil Taxonomy classification. Allophanic soils generally have a dark-colored surface soil, slippery or greasy consistency, a predominantly crumb and granular structure, and a low bulk density ranging from 0.3 to 0.8 Mg/m3. Although allophanic soils are apparently well-drained, they still have a very high water content many days after rain. When the soil is pressed between fingers, it gives a plastic, greasy, but non-sticky sensation of a silty or loamy texture. When dry, the soil loses its greasiness and becomes friable and powdery. The low bulk density of allophanic soils is closely related to the high soil porosity. For example, moderately weathered allophanic soils typically have a total porosity of 78%, with macro-, meso-, and micropores occupying 13%, 33%, and 32%, respectively. Water retained in the mesopores is readily available for plant uptake. Water retained in the micropores is held strongly by soil particles and is not readily available for plant use. The macropores provide soil aeration and facilitate water infiltration. The high water retention capacity is also associated with the high soil porosity. In allophanic soils formed under a humid climate, especially those containing large amounts of allophane, the moisture content at field capacity can be as high as 300%, calculated on a weight basis. Such extremely high values of water content seem misleading.


2011 ◽  
Vol 50 (No. 10) ◽  
pp. 463-469 ◽  
Author(s):  
J. Akhter ◽  
K. Mahmood ◽  
K.A. Malik ◽  
A. Mardan ◽  
M. Ahmad ◽  
...  

The hydrogel amendments may improve seedling growth and establishment by increasing water retention capacity of soils and regulating the plants available water supplies, particularly under arid environments. The effects of different levels of a locally prepared hydrogel were studied on the moisture properties of sandy loam and loam soils (fine-loamy, mixed, hyperthermic Typic Haplargids, USDA, Luvic Yermosol, FAO) and on growth response of three plant species, viz. barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and chickpea (Cicer arietinum L.). Water absorption by gel was rapid and highest in distilled water and was inhibited by an increase in water salinity. The addition of 0.1, 0.2 and 0.3% hydrogel increased the moisture retention (&theta;r) at field capacity linearly (r = 0.988) and thus the amount of plant available water significantly in both sandy loam and loam soils compared to the untreated soils. Seed germination of wheat and barley was not affected but seedling growth of both species was improved by the gel amendment. In loam soil, seed germination of chickpea was higher with 0.2% gel and seedling growth increased with increase in gel level compared with control conditions. The hydrogel amendment caused a delay by 4&ndash;5 days in wilting of seedlings grown in both soils compared with control conditions. The hydrogel amendment was effective in improving soil moisture availability and thus increased plant establishment. However, the varied responses of plant species in sandy loam and loam soils warrant further studies on the behaviour of different soil types with gel amendments.


2016 ◽  
Vol 51 (9) ◽  
pp. 1003-1020 ◽  
Author(s):  
Guilherme Kangussu Donagemma ◽  
Pedro Luiz de Freitas ◽  
Fabiano de Carvalho Balieiro ◽  
Ademir Fontana ◽  
Silvio Túlio Spera ◽  
...  

Abstract Light soils occupy 8% of the Brazilian territory and are especially expressive in the new and last agricultural frontier in Brazil: the Matopiba region - in the states of Maranhão, Tocantins, Piauí, and Bahia -, where they represent 20% of the area. These soils fit into the textural classes of sand and loamy sand or sandy loam, down to 0.75-m soil depth or deeper, and they are mainly represented by Neossolos Quartzarênicos (Quartzipsamments) and, partly, by Latossolos (Oxisols) and Argissolos (Ultisols). The understanding of soil functioning depends on the establishment of distinguishing criteria for: organic matter dynamics; content and mineralogy of the clay fraction; coarse sand and total sand contents, in relation to those of fine sand; mean diameter of the sand fraction; and water retention capacity. These criteria can contribute for the zoning and for the conservation and fertility management of light soils, as well as for the estimation of their agricultural potential. Integrated production systems, such as crop-livestock and crop-livestock-forestry integration, besides no-tillage with crop rotation, mixed forestry planting with legumes, and the use of green manure and cover crops are relevant for the proper management of these soils. The objective of this review was to characterize light soils and to highlight the main challenges regarding their agricultural potential and their conservation and fertility managements, in face of the expansion and consolidation of the new Brazilian agricultural frontier.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 536-545 ◽  
Author(s):  
Remke L. Van Dam ◽  
Wolfgang Schlager ◽  
Mark J. Dekkers ◽  
Johan A. Huisman

Iron oxides frequently occur as secondary precipitates in both modern and ancient sediments and may form bands or irregular patterns. We show from time-domain reflectometry (TDR) field studies that goethite iron-oxide precipitates significantly lower the electromagnetic wave velocity of sediments. Measured variations in magnetic permeability do not explain this decrease. The TDR measurements and a dielectric mixing model also show that neither electrical conductivity nor relative permittivity of the solid material are altered significantly by the iron-oxide material. From drying during all of the measurements, the amount of iron oxides appears to correlate with the volumetric water content, which is the result of differences in water retention capacity between goethite and quartz. These variations in water content control relative permittivity and explain the observed variation in electromagnetic wave velocity. Using 2-D synthetic radar sections, we show that the pattern of iron-oxide precipitation may have a profound influence on the GPR reflection configuration and can cause major difficulties in interpretation.


Sign in / Sign up

Export Citation Format

Share Document