Tropical Soils
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780195115987, 9780197561157

Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Allophanic soils are dark-colored young soils derived mainly from volcanic ash. These soils typically have a low bulk density (< 0.9 Mg/m3), a high water retention capacity (100% by weight at field capacity), and contain predominantly allophanes, imogolite, halloysite, and amorphous Al silicates in the clay fraction. These soils are found in small, restricted areas with volcanic activity. Worldwide, there are about 120 million ha of allophanic soils, which is about 1% of the Earth's ice-free land surface. In tropical regions, allophanic soils are among the most productive and intensively used agricultural soils. They occur in the Philippines, Indonesia, Papua New Guinea, the Caribbean and South Pacific islands, East Africa, Central America, and the Andean rim of South America. Allophanic soils are primarily Andisols and andic Inceptisols, Entisols, Mollisols, and Alfisols according to the Soil Taxonomy classification. Allophanic soils generally have a dark-colored surface soil, slippery or greasy consistency, a predominantly crumb and granular structure, and a low bulk density ranging from 0.3 to 0.8 Mg/m3. Although allophanic soils are apparently well-drained, they still have a very high water content many days after rain. When the soil is pressed between fingers, it gives a plastic, greasy, but non-sticky sensation of a silty or loamy texture. When dry, the soil loses its greasiness and becomes friable and powdery. The low bulk density of allophanic soils is closely related to the high soil porosity. For example, moderately weathered allophanic soils typically have a total porosity of 78%, with macro-, meso-, and micropores occupying 13%, 33%, and 32%, respectively. Water retained in the mesopores is readily available for plant uptake. Water retained in the micropores is held strongly by soil particles and is not readily available for plant use. The macropores provide soil aeration and facilitate water infiltration. The high water retention capacity is also associated with the high soil porosity. In allophanic soils formed under a humid climate, especially those containing large amounts of allophane, the moisture content at field capacity can be as high as 300%, calculated on a weight basis. Such extremely high values of water content seem misleading.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Several pedological soil classification schemes have been developed to classify soils worldwide based on morphological features, stage of weathering, and to some extent their chemical and physical properties. Three soil classification systems are commonly used as research and teaching tools in the tropics, namely, the USDA Soil Taxonomy classification, the FAO/UNESCO World Soil Legends, and the French soil classification system. Brazil, the country with the largest land area in the tropics, has its own national soil classification system. However, soil survey, classification, and interpretation are costly and time-consuming, and few countries in the tropics have completed soil maps that are at a scale detailed enough to be useful to farmers and land users. In the absence of soil information at state, county or farm level, the authors propose a simple descriptive grouping of major soils in the tropics based on clay mineralogy to facilitate discussion on soil management and plant production in the subsequent chapters of this book. Reference to the Soil Taxonomy classification will be made when such information is available. It should be pointed out that the main purpose of this technical grouping is to provide field workers, especially those who are less familiar with the various soil classification systems, with a simple framework for planning soil management strategies. It by no means replaces the national and international soil taxonomy and classification systems that are designed for communication among soil scientists and for more detailed interpretation of soil survey data and land-use planning. This technical scheme classifies major arable soils in the tropics into four groupings according to their dominant clay mineralogy. They are • kaolinitic soils • oxidic soils • allophanic soils • smectitic soils Kaolinitic soils are deeply weathered soils with a sand, loamy sand, or sandy loam texture in the surface horizon and a clayey B horizon (20-60%). Silt content is low (< 20%) throughout the profile. Kaolinite (> 90%) is the dominant mineral in the clay fraction. These soils have an effective CEC of less than 12 cmol/kg of clay in the lower B horizon. Kaolinitic soils have a relatively high bulk density, especially in the clayey subsoil horizons (> 1.40 Mg/m3). The structure of the subsoil horizons is usually massive or blocky.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Soil organisms are fauna and flora that spend all or part of their life in the soil. They play a vital role in the maintenance of soil fertility through processes such as the accumulation of soil organic matter, soil aggregation, and the mineralization of organic matter which releases nutrients available to higher plants. Moreover, many antibiotics are produced from microorganisms isolated from soils. Soil fauna include macrofauna (> 2 mm in width, such as mice, earthworms, termites, and millipedes), through mesofauna (0.2-2 mm, such as collembola and mites), to microfauna (<0.2 mm, such as nematodes and protozoa). Soil flora include macroflora (such as the roots of higher plants), and microflora (such as algae, fungi, actinomycetes, and bacteria). The activities of soil fauna and flora are intimately related in what ecologists call a food chain or, more accurately, a food web. Higher plants play the role of primary producers by using water and energy from the sun, and carbon from atmospheric carbon dioxide to make organic molecules and living tissues. Soil organisms that eat live plants, such as mice or termites, are called herbivores. Most soil organisms, however, use the debris of dead tissues left by plants and animals (detritus) as their source of food, and are called detritivores. Soil organisms that consume live animals, such as centipedes, mites, spiders, or nematodes, are predators and are called carnivores. Some organisms that live off, but do not consume, other organisms are called parasites. Mycrophytic feeders are organisms that use microflora as their source of food, and include certain collembola, mites, termites, nematodes, and protozoa. The actions of soil fauna in the food web are both physical and chemical, while those of the microflora are mostly biochemical. The actions of mesofauna and macrofauna enhance the activities of the microflora in several ways. First, the chewing action fragments the litter to expose the more easily decomposed cell contents for microbial digestion. Second, the fragmented plant tissues are thoroughly mixed with microorganisms in the animal gut, where conditions are ideal for microbial action. Third, the mobile animals carry microorganisms with them and help them to disperse and find new food sources.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Soil chemistry deals with the chemical properties and reactions of soils. It is essentially the application of electrochemistry and colloid chemistry to soil systems. Major topics include surface charge properties of soil colloids, cation and anion sorption and exchange, soil acidity, soil alkalinity, soil salinity, and the effects of these chemical properties and processes on soil biological activity, plant growth, and environmental quality. The ability of the electrically charged surface of soil colloids to retain nutrient cations and anions is an important chemical property affecting the fertility status of the soil. There are two major sources of electrical charges on soil organic and inorganic colloids, namely, permanent or constant charges and variable or pH-dependent charges. Permanent or constant charges are the result of the charge imbalance brought about by isomorphous substitution in a mineral structure of one cation by another of similar size but differing valence (see also section 2.3.2). For example, the substitution of Mg2+ for Al3+ that occurs in Al-dominated octahedral sheets of 2:1 clay minerals results in a negative surface charge in smectite, vermiculite, and chlorite. The excess negative charges are then balanced by adsorbed cations to maintain electrical neutrality. Permanent negative charges of all 2:1 silicate minerals arise from isomorphous substitutions. The l:l-type clay mineral, kaolinite, has only a minor amount of permanent charge due to isomorphic substitution. The negative charges on kaolinite originate from surface hydroxyl groups on the edge of the mineral structure and are pH-dependent. Variable or pH-dependent charges occur on the surfaces of Fe and Al oxides, allophanes, and organic soil colloids. This type of surface charge originates from hydroxyl groups and other functional groups by releasing or accepting H+ ions, resulting in either negative or positive charges. Other functional groups are hydroxyl (OH) groups of Fe and/or Al oxides and allophanes and the COOH and OH groups of soil organic matter. Variable-charge soil colloids bear either a positive or a negative net surface charge depending on the pH of the soil. The magnitude of the charge varies with the electrolyte concentration of the soil solution.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Soils are weathering products of rocks and minerals. The rocks in Earth’s outer surface can be classified as igneous, sedimentary, or metamorphic rocks. Igneous rocks are formed from molten magma. They are composed of primary minerals, which are minerals that have not been altered chemically since they formed as molten lava solidified. Examples of primary minerals are the light-colored minerals quartz, muscovite, feldspars, and orthoclase, and the dark-colored minerals biotite, augite, and hornblende. In general, dark-colored minerals contain iron (Fe) and magnesium (Mg) and are more easily weathered than light-colored minerals. Coarse-grained igneous rocks, such as granite and diorite, contain mainly lightcolored minerals, while medium-grained igneous rocks such as gabbro, peridotite, and hornblendite are composed of dark-colored primary minerals. Rhyolite and andesite are medium-grained igneous rocks containing light-colored primary minerals. Basalt is dark-colored with an intermediate to fine rock texture, and basaltic volcanic glass has a fine texture. Examples of light-colored igneous rocks with a fine texture are felsite and obsidian. Sedimentary rocks are the most common type of rock, covering about 75% of Earth’s land surface. They are mainly composed of secondary minerals, which are minerals that are recrystallized products of the chemical breakdown and/or alteration of primary minerals. Sedimentary rocks form when weathering products from rocks are cemented or compacted. For example, quartz (SiO2) sand, a weathering product of granite, may become cemented into sandstone. Another common sedimentary rock is limestone. There are two types of limestone, namely, calcite (CaCO3), and dolomite (CaCO3.MgCO3). Clays may become cemented into a sedimentary rock, which is known as shale. A sedimentary rock with several dominant minerals is called a conglomerate, in which small stones with different mineralogy are cemented together. Metamorphic rocks are formed by the metamorphism of igneous or sedimentary rocks. Great pressure and high temperatures, caused by the shifting of continental plates, can compress, distort, and/or partially re-melt the original rocks. Igneous rocks are commonly modified to form schist and gneiss, in which light and dark minerals have been reoriented into bands. Sedimentary rocks, such as limestone and shale, may be metamorphosed to form marble and slate, respectively.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

The term “tropics” refers to the continuously warm and frost-free zone of the world that lies approximately between the Tropic of Cancer (or latitude 23.5° north of the equator) and the Tropic of Capricorn (or latitude 23.5° south of the equator). The tropical region comprises approximately 36% of the world’s land surface. Geographically, the tropics encompasses the entire region of Southeast Asia, Central America, the islands in the South Pacific and the Caribbean Basin, a major part of Africa, South America, a large portion of the Indian subcontinent, and a small part of northern Australia. Within a tropical region, natural vegetation and agriculture vary with elevation and rainfall regime. Within the tropical belt, mean annual temperature at sea level is about 26 °C, and it decreases approximately 0.6 °C with every 100 m increase in elevation. On the basis of elevation, the tropics may be further divided into • lowland tropics (areas below 600 m), • midaltitude tropics (areas between 600 and 900 m), and • high-altitude tropics or tropical highlands (areas above 900 m). Tropical highlands account for 23% of the tropics whereas the low- and midaltitude regions together comprise about 87% of the total area. Tropical highlands usually have cool air temperatures with a mean annual temperature of 20 °C or lower. Rainfall on tropical highlands can be extremely variable within a short distance. Because of the year-round comfortable temperature, areas of tropical highlands with favorable rainfall and fertile soils are usually densely populated and hence intensively cultivated. Climates in the lowland and midaltitude tropics generally share three common features, namely, a year-round warm temperature, rainfall of high intensity and short duration, and a high rate of evaporation. Climates are characterized principally by mean monthly air temperature, and the amount and distribution of rainfall.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Smectitic soils of the tropics are medium- to fine-textured alluvial soils containing moderate to large amounts (20% or more) of smectite, a shrinking and swelling clay mineral, in the clay fraction. Small to moderate amounts of other layer silicate minerals, such as illite, chlorite, vermiculite, and kaolinite, are also present in the clay fraction. Smectitic soils have moderate to high values of CEC (10-50 cmol/kg of soil), high base saturation, and high water-retention capacity. These soils are usually developed on alluvial materials rich in basic cations, especially Mg. Smectitic soils commonly occur on alluvial plains in river valleys and deltas as well as in inland depressions. In the wetter tropics, large areas of smectitic soils are found in tropical Asia, especially Vietnam, Thailand, and Myanmar (Burma). These young alluvial soils are rich in nutrient-bearing weatherable minerals, such as micas, feldspars, and hornblende. Smectitic soils on the alluvial plains and inland valleys have a shallow groundwater table, and some soils are flooded during the rainy season. Thus, they are best suited for rice cultivation. For example, in the flood plains along the Mekong and Chao Phraya rivers of the Indo- China peninsula, mineral-rich deposits from annual flooding are able to maintain relatively high rice yields with little or no additional nutrient inputs. Smectitic soils occurring in seasonally flooded coastal mangrove swamps are known as acid sulfate soils. These soils are used for cultivation of swamp rice and floating rice during the rainy season, depending upon the depth of flooding by fresh water. In drier regions, clayey smectitic soils (mainly Vertisols) often exhibit large cracks during the dry season and become very sticky and difficult to work with during the rainy season. In the drier tropics, large areas of clayey smectitic soils are found in central India, central Sudan, southern Ghana, and in the Lake Chad region of central Africa. Clayey smectitic soils are usually found in the inland depressions scattered throughout the drier regions of West, East and Central Africa. Because of their high chemical fertility, these soils are important soils for cropping and grazing in the drier tropics.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

In the natural world, plant species evolve and adapt to specific soil and climatic conditions. The productivity and stability of a natural soil-plant continuum or ecosystem are maintained through diversity, succession, and internal nutrient cycling. Hence, there are no rich soils or poor soils but different soils supporting different ecosystems. From an agricultural viewpoint, however, the term soil fertility may be defined as the capacity of a soil, under a given rainfall or water management regime, to support the growth of common food and fiber crops with minimum or no external inputs for a long period of time without adversely degrading the chemical, physical, and biological properties of the soil. Thus, a naturally fertile or productive soil usually possesses the following features: • good soil tilth or workability • adequate organic matter content in the surface layer • adequate permeability • adequate available water-holding capacity • slightly acidic to neutral pH • loamy-textured topsoil • moderate amounts of smectite and weatherable minerals Worldwide, the most fertile soils are prairie soils derived from glacial till, young alluvial soils in river valleys and deltas and high-base-status volcanic ash soils. These soils are also known as Mollisols, high-base-status Entisols and high-base- status Andisols, respectively, according to the Soil Taxonomy classification. At the other end of the scale are the so-called infertile soils. These are the highly weathered and strongly leached soils or “lateritic soils” of the tropics. Ultisols and Oxisols rich in kaolinite and Fe and Al oxides fall into this category. The soil fertility status of other types of soils falls in between these two groups. In general, parent material and stage of weathering are good indicators of soil fertility. Moderately weathered soils derived from basic parent rocks such as basalts and limestone and recent alluvial deposits are invariably more fertile than those derived from acidic parent rocks such as sandstone, quartzite, and coarse-grained granite. Strongly weathered soils generally have a low fertility because primary minerals containing plant nutrients such as Ca, Mg, and K have long disappeared through dissolution, acidification, and leaching. The dominant clay-size minerals in strongly weathered soils, kaolinite and Fe and Al oxides, possess little capacity to retain these cations.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

The term “soil management” refers to the human manipulation of chemical, physical, and biological conditions of the soil for the production of agricultural plants. Good soil management helps maintain and improve soil fertility while sustaining optimum crop yield over time, whereas inappropriate soil management practices can lead to the degradation of soil fertility and a declining crop yield within a relatively short period of time. In a cropped field, where pests and disease are not limiting factors, the decline in crop yield over time may be attributed to several soil-related factors, namely, deterioration of soil physical conditions, such as surface crusting and subsurface compaction, depletion of available nutrients in the soil and soil acidification, soil moisture stress (drought or waterlogging), and the decline in soil organic matter and soil biological activity. Thus, major tasks of soil management for crop production include the following: • tillage and seedbed preparation • replenishment of soil nutrients • soil moisture management • maintenance of soil organic matter The main purposes of tillage are to loosen a compacted surface soil to facilitate seed emergence and root growth through improved soil aeration and water storage, and to eradicate weeds before planting and control subsequent weed growth during the cropping season. Common tillage practices used in tropical agriculture are as follows: • Slash-and-burn, followed by sowing seeds into holes made by punching a wooden stick into the porous surface soil. • Slash-and-burn, followed by heaping or ridging the compacted surface soil using a hand hoe. • Plowing, harrowing, and puddling in irrigated rice paddies using water buffalo or a two-wheel power-tiller. • Ridge tillage using a hand hoe, animal traction or an engine-powered tractor on crusted or compacted soils and poorly drained clayey soils. • Minimum or strip tillage with a crop-residue mulch on coarse-textured soils and on sloping land. • Conventional tillage involving plowing and harrowing on fine-textured soils and compacted soils on flatland. • Minimum tillage with a plant-residue mulch or cover crop in annual and tree crop mixed systems (agroforestry).


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Soil physics deals with physical properties of soils such as soil texture, porosity, soil water, soil aeration, soil temperature, soil structure, and the influence of these properties on plant growth. Soil texture refers to the particle-size distribution of soils. The primary soil particles are arbitrarily divided into different size classes. The International Society of Soil Science defines soil particles larger than 0.02 mm and smaller than 2 mm as sand, those larger than 0.002 mm but smaller than 0.02 mm as silt, and those smaller than 0.002 mm as clay. Soil particles larger than 2 mm, such as gravel and stones, are called coarse fragments and are not part of the soil itself, to which the term soil texture applies, but can have considerable influence on soil properties and plant growth. Sand particles (0.02-2 mm) can be further divided into fine sand (0.02-0.2 mm) and coarse sand (0.2-2 mm). Sand particles can be rounded or angular, and are noncohesive. They usually consist of a single mineral, usually quartz (SiO2) or other primary silicate, and may appear brown, yellow, or red as a result of Fe-oxide coatings. Due to its mineral composition, sand has a smaller plant-nutrient content than finer soil particles. Sand particles have large voids between them which promote drainage of water and entry of air into the soil. Due to their low specific surface area, sand particles can hold little water, therefore rain needs to be received at short intervals to enable plant growth on sandy soils. Silt particles (0.002-0.02 mm) do not feel gritty when rubbed between fingers and are not visible to the unaided eye as sand particles are. Quartz is generally the dominant mineral. However, when silt is composed of weatherable minerals, the release of plant nutrients can be significant. The pores between silt particles are smaller and more numerous than those in sand, and silt therefore retains more water than sand, which helps to sustain plant growth. Silt itself does not exhibit much stickiness or plasticity and is therefore easily washed away by water. If silt fractions have some cohesion and adsorptive capacity, it is due to a film of adhering clay particles.


Sign in / Sign up

Export Citation Format

Share Document