scholarly journals Reinforced Concrete Buildings with Plane Frame, Shear Wall with and without Openings

2018 ◽  
Vol 65 ◽  
pp. 02007
Author(s):  
Zafarullah Nizamani ◽  
Wong Che Luk ◽  
Syed Muhammad Bilal Haider

Malaysia is situated at Sunda plate which has geographic advantage in seismic zone. However, an earthquake occurred in Sabah, east of Malaysia without a warning in 2015. This scenario raised the question regarding the structural performance of high-rise buildings in Malaysia in response to seismic activity. This study is to analyze the effects of the shear wall on seven RC buildings by using pushover analysis. This pushover analysis is a simple approach where a building is subjected to increasing horizontal lateral loads until the building fails. SCIA Engineer software is used to model three different designs of seven storeys buildings are model in accordance with the Eurocode 8. The pushover analyses are carried out on three models, pushover curves (base shear vs. roof displacement) are plotted, and they are compared to explore both elastic and inelastic properties of the building response to the seismic action. The frame model without shear wall can resist less base shear. The plane frame model also approaches maximum allowable displacement of 60 mm earlier as compared to the other two models. Therefore, the high-rise buildings with shear wall design are highly recommended for the lifelong seismic resistance of reinforced concrete buildings.

2018 ◽  
Vol 65 ◽  
pp. 08008
Author(s):  
Syed Muhammad Bilal Haider ◽  
Zafarullah Nizamani ◽  
Chun Chieh Yip

The reinforced concrete structures, not designed for seismic conditions, amid the past earthquakes have shown us the significance of assessment of the seismic limit state of the current structures. During seismic vibrations, every structure encountered seismic loads. Seismic vibrations in high rise building structure subjects horizontal and torsional deflections which consequently develop extensive reactions in the buildings. Subsequently, horizontal stiffness can produce firmness in the high rise structures and it resists all the horizontal and torsional movements of the building. Therefore, bracing and shear wall are the mainstream strategies for reinforcing the structures against their poor seismic behaviours. It is seen before that shear wall gives higher horizontal firmness to the structure when coupled with bracing however it will be another finding that in building model, which location is most suitable for shear wall and bracing to get better horizontal stability. In this study, a 15 story residential reinforced concrete building is assessed and analyzed using building code ACI 318-14 for bracing and shear wall placed at several different locations of the building model. The technique used for analysis is Equivalent Static Method by utilizing a design tool, finite element software named ETABS. The significant parameters examined are lateral displacement, base shear, story drift, and overturning moment.


2017 ◽  
Vol 21 ◽  
pp. 45-49
Author(s):  
Mehmet Kamanli ◽  
Alptug Unal

In reinforced concrete buildings in case of a possible earthquake, the buildings slamp as they lost their horizontal stability because of hinging of column ends. The assumptions for plastic hinge lengths are present during project stage of reinforced concrete buildings. According to Turkish Earthquake Regulations, although plastic hinge length is determined to be 0.5h, it's known that plastic hinge length is determined via various formulas in some other regulations all over the world. In reinforced concrete columns, it's necessary to indicate the effect of plastic hinge length on the column behavior. For this purpose, pushover analysis of 5 column samples having different plastic hinge lengths was performed with non-linear analysis program. As a result of pushover analysis, situations of plastic hinges formed in columns and their load-displacement curves were determined. The graphs and the data were compared and the results were discussed.


2015 ◽  
Vol 45 (2) ◽  
pp. 213-228 ◽  
Author(s):  
Hirotoshi Uebayashi ◽  
Masayuki Nagano ◽  
Takenori Hida ◽  
Takehiko Tanuma ◽  
Mitoshi Yasui ◽  
...  

Author(s):  
Toshimi Kabeyasawa ◽  
Toshikazu Kabeyasawa ◽  
Hiroshi Fukuyama

The effects of floor slabs on the flexural strength of beams in reinforced concrete buildings under seismic action were verified through tests of frame assembly specimens. A series of experimental and analytical investigations were conducted from 2010 to 2014 in order to further validate the current design practices in Japan. Loading methods in the past beam component tests were reviewed with probable effects of floor slabs. A special loading set-up was used for the frame assembly specimens consisting of four columns and four beams with lengths of one span and two half spans in two directions. The four columns were loaded laterally and independently at mid-height of the upper storey and supported at mid-height of the lower storey with pin-fixed and pin-roller so that axial elongation of the beams and slab would not be constrained by the lateral forces. It has been found from these new loading tests that the tensile stresses in the floor slab reinforcing bars are generally uniform at the beam critical sections and up to the full slab width for the flexural strength when the slab is subjected to tension bending around one percent storey drift, which is much wider than assumed in the current design evaluation.


Sign in / Sign up

Export Citation Format

Share Document