scholarly journals Behavioural Study of Shear Wall with Correlational to Bracing under Seismic Loading

2018 ◽  
Vol 65 ◽  
pp. 08008
Author(s):  
Syed Muhammad Bilal Haider ◽  
Zafarullah Nizamani ◽  
Chun Chieh Yip

The reinforced concrete structures, not designed for seismic conditions, amid the past earthquakes have shown us the significance of assessment of the seismic limit state of the current structures. During seismic vibrations, every structure encountered seismic loads. Seismic vibrations in high rise building structure subjects horizontal and torsional deflections which consequently develop extensive reactions in the buildings. Subsequently, horizontal stiffness can produce firmness in the high rise structures and it resists all the horizontal and torsional movements of the building. Therefore, bracing and shear wall are the mainstream strategies for reinforcing the structures against their poor seismic behaviours. It is seen before that shear wall gives higher horizontal firmness to the structure when coupled with bracing however it will be another finding that in building model, which location is most suitable for shear wall and bracing to get better horizontal stability. In this study, a 15 story residential reinforced concrete building is assessed and analyzed using building code ACI 318-14 for bracing and shear wall placed at several different locations of the building model. The technique used for analysis is Equivalent Static Method by utilizing a design tool, finite element software named ETABS. The significant parameters examined are lateral displacement, base shear, story drift, and overturning moment.

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Abdelkader Nour ◽  
Abdelkader Benanane ◽  
Humberto Varum

The multiple earthquakes have proved the effect of chained masonry walls on the seismic behavior of multistoried reinforced concrete buildings. The chained masonry walls have been considered one of the types of masonry infill walls but without gaps. This participation came intending to study this effect through the modeling of several two-dimensional frames for a multistoried reinforced concrete building, taking into account the hollow brick walls, which represent the most common type in Algeria. We analyzed the proposed models using ETABS finite element software, relying on the response spectrum method and respecting the most important requirements according to the applicable Algerian Seismic Code. After analysis of the different models, the results have been compared according to the parameters of the period, base shear, lateral displacement, and stiffness. Through a critical synthesis of the results, we concluded that these walls could significantly affect the seismic behavior of this type of buildings. Moreover, the neglect of these walls in the modeling process can lead designers to have a false perception of the behavior of these buildings towards seismic loadings.    


2011 ◽  
Vol 243-249 ◽  
pp. 5854-5857
Author(s):  
Hao Zhang ◽  
Hong Nan Li ◽  
Zhe Wang

The dynamic behavior affected by strain rate effect of the high-rise reinforced concrete shear wall structure subjected to seismic loading are analyzed by finite element software ABAQUS. The damaged plasticity model for concrete was used, and the strain rate effect of concrete and steel were considered. The nonlinear dynamic response results with strain rate effect are compared with the results without strain rate effect. The distribution of strain rate can not only influence the concrete and steel, but also have some effects on the dynamic response of the high-rise reinforced concrete shear wall structure. The strain rate effect is more prominent under the stronger seismic wave.


2012 ◽  
Vol 256-259 ◽  
pp. 2067-2073
Author(s):  
Xiang Dong Zhang ◽  
Pu Wang ◽  
Jian Guan

Analysis of the structure characteristics of the General Hospital of Fuxin Mining Group, through the instrument observation and use the finite element software for structural modeling, modal analysis show that the quality of structural system, the stiffness is more evenly distributed the structure of the torsional capacity to meet the requirements. Through input into Tianjin wave, analysis the dynamic characteristics of the model, the results show that: to tall wall-frame structure, shear wall is very restriction of lateral displacement in the central and bottom, stronger than upper structure on lateral displacement limit ability.


2018 ◽  
Vol 65 ◽  
pp. 02007
Author(s):  
Zafarullah Nizamani ◽  
Wong Che Luk ◽  
Syed Muhammad Bilal Haider

Malaysia is situated at Sunda plate which has geographic advantage in seismic zone. However, an earthquake occurred in Sabah, east of Malaysia without a warning in 2015. This scenario raised the question regarding the structural performance of high-rise buildings in Malaysia in response to seismic activity. This study is to analyze the effects of the shear wall on seven RC buildings by using pushover analysis. This pushover analysis is a simple approach where a building is subjected to increasing horizontal lateral loads until the building fails. SCIA Engineer software is used to model three different designs of seven storeys buildings are model in accordance with the Eurocode 8. The pushover analyses are carried out on three models, pushover curves (base shear vs. roof displacement) are plotted, and they are compared to explore both elastic and inelastic properties of the building response to the seismic action. The frame model without shear wall can resist less base shear. The plane frame model also approaches maximum allowable displacement of 60 mm earlier as compared to the other two models. Therefore, the high-rise buildings with shear wall design are highly recommended for the lifelong seismic resistance of reinforced concrete buildings.


2020 ◽  
Vol 6 (1) ◽  
pp. 31
Author(s):  
Mustafa Tolga Çöğürcü ◽  
Mehmet Uzun

In developing countries, the need for shelter, working area, shopping and entertainment centers is increasing due to the increasing population effect. In order to meet this need, it is necessary to turn to high-rise buildings. Significant damages have been observed as a result of insufficient horizontal displacement stiffness of high-rise buildings in major earthquakes in previous years. It is known that as the height of the structure increases, the displacement demand of the structure also increases. Since it is accepted that the structure will make inelastic deformation in the design of the structure, these displacements increase to very high levels as the number of stories increases. For this reason, damages can be much higher than expected. In order to limit the level of damage that may occur in high-rise buildings, the horizontal displacement of buildings is limited in many regulations in our age. This limitation is possible by increasing the rigidity of the structures against horizontal displacement. In recent years, the use of shear wall has increased due to the horizontal displacement limitation in the regulations. The use of shear walls in buildings limits the horizontal displacement. However, the choice of where the shear walls will be placed on the plan is very important. Failure to place the shear walls correctly may result in additional loads in the structure. It can also lead to torsional irregularity. In this study, a 10-storey reinforced concrete building model was created. Shear wall at the rate of 1% of the plan area of the building was used in the building. The shear walls are arranged in different geometric shapes and different layouts. The earthquake analysis of 5 different models were performed. Equivalent Earthquake Load, Mode Superposition and Time History Analysis methods were used for earthquake analysis. The results were compared and a proposal was made for the geometry and configuration of the shear wall.


2021 ◽  
Vol 23 (2) ◽  
pp. 167-176
Author(s):  
Sekar Mentari ◽  
Rosi Nursani

Indonesia is one of the countries that is prone to earthquakes. In addition to the dead loads, superimposed dead loads, and live loads, the design of buildings in Indonesia must be concerned with earthquake loads. Installing shear walls in the building structure as the Special Moment Frame Dual System is one of a solution to withstand earthquake loads. However, the location of shear walls must be considered, especially in buildings with horizontal irregularities. This study aims to determine the optimum location of the shear walls in a 10-storey building that has U-configuration with dynamic earthquake loads. This research is a numerical simulation ran by modelling the structure with software. To know the effect of the shear wall’s location on a building, several variations of the shear wall configuration with different positions have been conducted. It can be seen the lateral displacement of each floor and the shear force are the response structure to withstand the dynamic earthquake loads. Shear walls that are located close to the center of mass of the building are the optimum variation because the position of the shear wall is the closest to the core area of the building, which is the rotational axis of the building.


2019 ◽  
Vol 35 (1) ◽  
pp. 333-360 ◽  
Author(s):  
Ryan Hoult ◽  
Helen Goldsworthy ◽  
Elisa Lumantarna

This research investigates the development of analytical fragility functions for reinforced concrete shear wall buildings in Australia. A building stock for the city of Melbourne is used in conducting an assessment of these types of structures. The assessment uses the best information available for selecting the building parameters applicable to the low-to-moderate seismic region, site soil class, expected earthquake ground motions, and site response. The capacity spectrum method is used to derive vulnerability functions for low-, mid-, and high-rise reinforced concrete shear wall buildings. Although there is a paucity of earthquake damage data available in Australia, some comparisons are made using the results from the fragility functions derived here to the damage data from the Newcastle earthquake in 1989.


2012 ◽  
Vol 193-194 ◽  
pp. 1109-1112
Author(s):  
Li Ming Wu ◽  
Xiao Liang Luo ◽  
Zi Jian Wang

Taking a 5-story reinforced concrete frame structure on the transformed 3-layer steel frames for an example, use finite element software ANSYS to reformation as a whole building model under static wind load changes for comparative analysis of internal force and displacement of the corresponding node. Analysis results show that in the transformation of steel on reinforced concrete frame structure, should fully take into account the structural stiffness change on construction of the overall effect of wind resistance, so that the transformation of the steel concrete frame structure more reasonable.


Sign in / Sign up

Export Citation Format

Share Document