scholarly journals Strength Effect of Different U-Shaped HDR Thicknesses in Hook-End Precast Beam-Column Joint: A Nonlinear FE Analysis

2018 ◽  
Vol 65 ◽  
pp. 08009
Author(s):  
Kai Siong Woon ◽  
Farzad Hejazi

A precast reinforced concrete frame constructed with new hook-end joint at both beam-column connections was numerical modelled and analysed using Finite Element Method, for its overall strength attainment under the action of horizontal cyclic loading. Five different thicknesses of U-shaped HDR, ranging from 15 to 35 mm thick in 5-mm intervals, were assigned in the numerical model as the vibrational absorber component in between the hook-end beam-column joints. The numerical force-displacement curves showed that precast frame with various thicknesses of U-shaped HDR had similar shape of hysteresis loops among each other. However, the precast frame with 25 mm thick of U-shaped HDR at its hook-end beam-column joint demonstrated the capacity to fulfil the highest force and displacement demands when compared with other thicknesses of HDR.

2012 ◽  
Vol 166-169 ◽  
pp. 1062-1066
Author(s):  
Huang Juan Zhao ◽  
Hai Tao Fan ◽  
Zhi Xin Wang

By using finite element analysis software ABAQUS, the mechanical behavior of the beam-column joints is studied through analyzing 8 interior beam-column joints in RC frame. Meanwhile, the factors which can have effects on the behavior of the beam-column joints are also obtained. The reasonable parameters such as material constitutive, the boundary conditions and mesh types will directly affect the accuracy of finite element analysis results. The mechanical behavior of the beam-column joint in RC frame is decided by concrete strength and volumetric percentage of stirrups. With the increase of concrete strength and volumetric percentage of stirrups in joint core, the shear capacity of interior beam-column joints in RC frame is improved.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2007 ◽  
Vol 7-8 ◽  
pp. 37-42
Author(s):  
D. Houghton ◽  
P.M. Wavish ◽  
Edward J. Williams ◽  
Sean B. Leen

This paper investigates the comparison of the measured and predicted force-displacement loops of a multiaxial representative fretting fatigue test rig for aeroengine spline couplings. A local finite element model of the fretting specimen and the fretting bridge is outlined. A more extensive model of the fretting test rig is then introduced. This global model also includes the loading structures. The model captures the compliance of the fretting test rig and improves the correlation of the observed hysteresis. This method allows the slip amplitude at the contacts to be quantified.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


2017 ◽  
Vol 11 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Jozef Bocko ◽  
Pavol Lengvarský

AbstractThe paper deals with application of the finite element method in modelling and simulation of nanostructures. The finite element model is based on beam elements with stiffness properties gained from the quantum mechanics and nonlinear spring elements with force-displacement relation are gained from Morse potential. Several basic mechanical properties of structures are computed by homogenization of nanostructure, e.g. Young's modulus, Poisson's ratio. The problems connecting with geometrical parameters of nanostructures are considered and their influences to resulting homogenized quantities are mentioned.


Sign in / Sign up

Export Citation Format

Share Document