scholarly journals Calculation of temperature field of coiled wire using EFM

2018 ◽  
Vol 72 ◽  
pp. 03002
Author(s):  
Zhongjun Shu ◽  
Wei Shen ◽  
Qiang Li ◽  
Minghao Fan ◽  
Jiaqing Zhang

Provided a heat transfer model of coiled wire method. Based on the method, a software of EFM (ANSYS) was used to calculate the temperature field of coiled wire. Comparisons between the experimental of RVS coiled wire and numerical results indicated the effectiveness of the method utilized. The simulation method based on EFM proved to be useful for the fire risk assessment of coiled wire.

2021 ◽  
Vol 169 ◽  
pp. 108416
Author(s):  
Michał Malendowski ◽  
Wojciech Szymkuć ◽  
Piotr Turkowski ◽  
Adam Glema ◽  
Wojciech Węgrzyński

2012 ◽  
Vol 516-517 ◽  
pp. 312-315
Author(s):  
Guang Hua Li ◽  
Hong Lei Liu ◽  
De Jian Wang

This paper has formulated a heat transfer model for analyzing the cooling properties of a heat pipe cooling device of oil-immersed electrical transformer. Based on the model, the oil temperature field of a 30 KVA oil-immersed transformer has been numerical simulated, and experiments also had been conducted. Results showed that the numerical simulation has good agreement with experiment results. Results also showed that heat pipe radiator is feasible for oil-immersed electrical transformer cooling. The model can be used to analyze the oil temperature distribution properties in an oil-immersed electrical transformer with heat pipe cooling device, and provide theoretical guide for transformer design and improvement.


2011 ◽  
Vol 338 ◽  
pp. 572-575
Author(s):  
Gui Jie Zhang ◽  
Kang Li ◽  
Ying Zi Wang

The heat transfer model was developed and the heat transfer of the strip coil stay in the hot coil box was analyzed. The temperature distribution of the strip coil was investigated use the model. The measured results are in good agreement with the calculated ones, has a guiding significance to further improve the technology.


Author(s):  
Satish Kumar Dubey ◽  
Neelesh Agarwal ◽  
P. Srinivasan

In steel rolling mills reheat furnaces are used to heat the billets prior to rolling processes. Reheating is one of the most energy intensive processes in the steel industries. Inadequate temperature measuring techniques and extremely complex analytical solution for temperature filed calculations demands suitable numerical model. In the present work a three dimensional transient heat transfer model is developed for billet heating in reheat furnaces. Conduction heat transfer within the billets is modeled using Finite Difference Method (FDM). Fully implicit spatial discretization approximation was used for three dimensional heat diffusion equation of billet. The three dimensional model takes into account the temperature dependent thermo physical properties, reaction heat effect and growing oxide layer. Algorithm is implemented in MATLAB® to solve three dimensional discretization equations. Model is capable of predicting the temperature field for billet and oxide scale thickness for any residence time. The predicted results are in reasonable concurrence with available data. The main objective of this work is to predict billet temperature field and oxide scale thickness for the various residence times, which may be vital for development of energy efficient optimization strategy for reheating process.


Author(s):  
Liang Peng ◽  
Zhenlei Chen ◽  
Yi Hu

Aiming at the issues of low accuracy and poor feasibility of the analytical results of the turbocharger turbine temperature field under operating conditions, a full-domain conjugate heat transfer numerical model was established by the conjugate heat transfer and finite volume method. The temperature field characteristics of each component of the turbocharger turbine were analyzed. The numerical and experimental test results were compared and analyzed. The global conjugate heat transfer model avoids the input of a large number of hypothetical data on the interface between fluid and solid in the traditional model, and makes the calculation process closer to the actual situation. Through the comparison with the experimental results, the accuracy of the turbine temperature field obtained by the global conjugate heat transfer model is more reasonable and more accurate than that of the traditional model, which verifies the reliability and accuracy of the global conjugate heat transfer model.


2013 ◽  
Vol 807-809 ◽  
pp. 14-19
Author(s):  
Jiu Xi Shi ◽  
Jin Song Deng ◽  
Xiao Ming Wang

Taking villages in the northern plain of Shaoxing County Zhejiang Province as the research object and by using heat transfer model and remote sensing image analysis method and taking advantage of surface temperature information varying in different areas recorded by ETM thermal infrared band and through selection of special endmember, we realize the separation of background and ambient superposed brightness temperature and establish statistical model on change of superimposed environmental brightness temperature based on distance and analyze characteristics of rural environment temperature field according to the features of heat exchange type. Study shows that endmember brightness temperatures of different surface features in the study area are respectively as follows: hard surface is 304.663K, water body is 297.851K, grassland is 298.966K, woodland is 298.827K; superimposed environmental temperature in village area is about 1.737K. Environment superposed brightness temperature and distance function are tools to describe the temperature field, predicting pixel brightness temperature by using the heat transfer model is more accurate than using linear spectrum mixed model.


2020 ◽  
Vol 13 (5) ◽  
pp. 182
Author(s):  
Stanislav Szabo ◽  
Iveta Vajdova ◽  
Edina Jencova ◽  
Daniel Blasko ◽  
Robert Rozenberg ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Sign in / Sign up

Export Citation Format

Share Document