scholarly journals Study on cadmium accumulation characteristics of Solanum nigrum with different ploidies

2019 ◽  
Vol 136 ◽  
pp. 07012
Author(s):  
Yunmin Huan ◽  
Zhouyang Jiu ◽  
Huixuan Zhou ◽  
Haoran Zhang ◽  
Yong Huang ◽  
...  

To study the cadmium accumulation characteristics of Solanum nigrum with different ploidies, the biomass, cadmium content and cadmium accumulation of diploid (Solanum photeinocarpum), tetraploid (Solanum photeinocarpum) and hexaploid (Solanum nigrum) were measured by a pot experiment. The results showed that the biomass of roots, stems, leaves and shoots of S. nigrum plants with different ploidy all ranked as follows: hexaploid > tetraploid > diploid. Cadmium content and cadmium accumulation in stems, leaves and shoots of hexaploid plants were significantly higher than those in tetraploid and diploid plants, and the cadmium translocation factor and translocation accumulation factor of hexaploid were the largest, too. Therefore, hexaploid S. nigrum had a highest ability to extract and transport cadmium, which can be used as an ideal plant for remediation of cadmium-contaminated soil.

2021 ◽  
Vol 14 (1) ◽  
pp. 429
Author(s):  
Rongrong Ying ◽  
Bing Xia ◽  
Xiaowen Zeng ◽  
Rongliang Qiu ◽  
Yetao Tang ◽  
...  

Heavy metal pollution in farmland threatens human life. It is not clear whether crops can adsorb heavy metals. In this study, the cadmium accumulation and tolerance in Chinese cabbage Brassica pekinensis (cv. Xiaoza-56) and the known Cd-accumulator Brassica juncea in hydroponics and pot experiment were investigated. Furthermore, we evaluated their potential on the phytoextraction of Cd-contaminated soil. The hydroponics with 1–50 μM Cd concentrations showed that both B. juncea and B. pekinensis had high Cd accumulation and tolerance with translocation factor closed to 1 at Cd levels < 25 μM. The pot study conducted with 5 to 100 mg Cd kg−1 soil indicated that B. juncea showed less tolerance and accumulation to Cd than B. pekinensis, especially at higher Cd levels. The bioconcentration factor was much higher than 1 in both B. juncea and B. pekinensis grown in <40 mg Cd kg−1 soil without showing biomass reduction. In the model evaluation, the ability of B. juncea and B. pekinensis to reduce the initial soil Cd concentration of 20 and 5 mg kg−1 to specific targets with a lower or higher biomass of 4 or 20 t ha−1, respectively. The above results indicate that B. juncea and B. pekinensis (cv. Xiaoza-56), which the latter is a better candidate for Cd phytoextraction in moderated Cd-contaminated soil. The results provide a reference for Cd pollution control.


2019 ◽  
Vol 71 (2) ◽  
pp. 11-29
Author(s):  
JACEK ANTONKIEWICZ ◽  
CZESŁAWA JASIEWICZ ◽  
WOJCIECH KĘPKA ◽  
AGNIESZKA KOWALEWSKA ◽  
ROBERT PEŁKA ◽  
...  

The experiment concerning the effect of furnace waste on the chemical composition of maize was conducted under conditions of a three-year pot experiment. The arable soil was amended with bottom ash in the amount of 23.33 g ∙ pot-1 as well as with increasing doses of cadmium (between 3 and 15 mg ∙ kg-1 soil d.m.). Introduction of ash and cadmium in the amount from 3 to 5 mg ∙ kg-1 d.m. to the soil had a significant effect on the increase of the yield of above-ground parts and roots of maize. The application of cadmium in doses from 7 to 15 mg ∙ kg-1 caused a considerable reduction in the yield of the tested plant. It was shown that the applied furnace ash influenced the decrease in the yielding of maize. Introduction of furnace ash to cadmium contaminated soil significantly influenced the increase in the content of Na, K, Mg, Ca and Si in maize biomass and the decrease in the content of P in maize. Among the studied elements, K was translocated from the roots to the above-ground parts most efficiently, and Na and Si – least efficiently, the evidence of which are the values of the translocation factor for these elements. The research shows that ash in cadmium contaminated soil influenced immobilization of phosphorus, and thereby limited the phytoavailability of this element. It was established that the above-ground parts took up more K, Mg, Ca, P, Si with the yield while and maize roots took up more Na. The lowest uptake of the studied metals by maize was observed in the treatment where only furnace ash was applied.


RSC Advances ◽  
2015 ◽  
Vol 5 (59) ◽  
pp. 47584-47591 ◽  
Author(s):  
Yicheng Yin ◽  
Yaqin Wang ◽  
Yunguo Liu ◽  
Guangming Zeng ◽  
Xinjiang Hu ◽  
...  

A Cd-tolerant plant species named Boehmeria nivea (L.) Gaudich (ramie) was applied to study its Cd accumulation and translocation mechanisms with the addition of ethylene diamine tetracetic acid (EDTA) or nitrilotriacetic acid (NTA).


2020 ◽  
Author(s):  
Liang Li ◽  
Pengyue Zhu ◽  
Xiaoyang Wang ◽  
Zhenhua Zhang

Abstract Background: Coexistence of polycylic aromatic hydrocarbons (PAHs) and heavy metals deleteriously threatens the quality of environmental health . Few reports uncover the mechanism of inoculation plants with Piriformospora indica for remediating PAH- m etal co-contaminated soil by analyzing the chemical speciations of contaminants . This study investigated the influence of inoculation Medicago sativa with P. indica to remediate phenanthrene (kind of PAHs ) , and cadmium (one of heavy metals ) co-contaminated soil by analyzing the plant growth, physiological parameters and chemical speciation in rhizosphere and non-rhizosphere . Results: T he presence of P. indica significantly increased plants tolerance, Chlorophyll a , Chlorophyll b , maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene an d /or cadmium contaminated soil. P. indica inoculation in M edicago sativa root increased f luorescein diacetate activities in phenanthrene, cadmium and both of that co-contaminated soil, especially in non-rhizosphere . The presence of phenanthrene hindered the inoculated plant from accumulating cadmium to some extent ; Whereas the presence of cadmium did not hinder the degradation of phenanthrene in both rhizosphere and non-rhizosphere after P. indica colonization. Although the poor bioavailability of cadmium in rhizosphere restricted the transportation into stem, P. indica colonization in plant efficiently increased cadmium accumulation in root in cadmium and phenanthrene co-contaminated soil. Conclusions: In conclusion, t he work provides the theoretical basis that Piriformospora indica combined with Medicago sativa contributed to the remediation of PAH-Metal co-contaminated soil.


2019 ◽  
Author(s):  
Liang Li ◽  
Pengyue Zhu ◽  
Xiaoyang Wang ◽  
Zhenhua Zhang

Abstract Background:Coexistence of polycylic aromatic hydrocarbons (PAHs) and heavy metals deleteriously threatens the quality of environmental health. Few reports uncover the mechanism of inoculation plants with Piriformospora indica for remediating PAH-metal co-contaminated soil by analyzing the chemical speciations of contaminants. This study investigated the influence of inoculation Medicago sativa with Piriformospora indica to remediate phenanthrene (kind of PAHs), and cadmium (one of heavy metals) co-contaminated soil by analyzing the plant growth, physiological parameters and chemical speciation in rhizospheric and non-rhizospheric soil. Results:The presence of P. indica significantly increased plants tolerance, Chlorophyll a, Chlorophyll b, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene and/or cadmium contaminated soil. P. indica inoculation in M. sativa root increased fluorescein diacetate activities in phenanthrene, cadmium and both of that co-contaminated soil, especially in non-rhezospheric soil. The presence of phenanthrene hindered the inoculated plant from accumulating cadmium to some extent; Whereas the presence of cadmium did not hinder the degradation of phenanthrene in both rhizospheric and non-rhizospheric soil after P. indica colonization. Although the poor bioavailability of cadmium in rhizospheric soil restricted the transportation into stem, P. indica colonization in plant efficiently increased cadmium accumulation in root in cadmium and phenanthrene co-contaminated soil. Conclusions: In conclusion, the work provides the theoretical basis that Piriformospora indica combined with Medicago sativa contributed to the remediation of PAH-Metal co-contaminated soil.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1698
Author(s):  
Wan Zhang ◽  
Yunlin Zhao ◽  
Zhenggang Xu ◽  
Huimin Huang ◽  
Jiakang Zhou ◽  
...  

Broussonetia papyrifera is a widely distributed economic tree species, and it is also a pioneer species in adverse environments. In order to investigate the growth and adaptation mechanism of B. papyrifera under cadmium (Cd) contaminated soil, potted experiments were used with six-month treatments to study Cd enrichment and the transportation, morphological and physiological characteristics of B. papyrifera tissues. The results showed that Cd mainly accumulated in the root when the Cd concentration was high (14.71 mg/kg), and the root biomass was significantly reduced by Cd stress although Cd promoted the growth of seedlings. The bioconcentration factors (BCF) increased with the increase in Cd concentration, and reached the maximum value of 0.21 at 14.71 mg/kg. On the contrary, translocation factor (TF) decreased significantly at 8.28–14.71 mg/kg Cd concentration. Cd not only led to the loose arrangement of the xylem vessels of leaves, but also changed the chlorophyll content. However, B. papyrifera could synthesize organic solutes such as soluble protein, soluble sugar and proline to reduce the intracellular osmotic potential. Our study proved that B. papyrifera has good tolerance to Cd stress and is a pioneer tree species for soil and ecological environment restoration.


2020 ◽  
Author(s):  
Liang Li ◽  
Pengyue Zhu ◽  
Xiaoyang Wang ◽  
Zhenhua Zhang

Abstract Background: The coexistence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals has deleterious effects on environmental quality. Few reports have studied the mechanisms of plant inoculation with Piriformospora indica to remediate PAH-metal co-contaminated soil by analyzing the chemical speciation of the contaminants. This study investigated the influence of the inoculation of Medicago sativa with P. indica to remediate soil co-contaminated with phenanthrene (a kind of PAH) and cadmium (a heavy metal) by analyzing plant growth, physiological parameters and chemical speciation in rhizosphere and nonrhizosphere soils. Results: The presence of P. indica significantly increased plant tolerance, chlorophyll a, chlorophyll b, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene- and/or cadmium-contaminated soil. P. indica inoculation in M. sativa roots increased fluorescein diacetate activities in soils contaminated with phenanthrene, cadmium or both, especially in the nonrhizosphere. The presence of phenanthrene prevented the inoculated plant from accumulating cadmium to some extent, whereas the presence of cadmium did not prevent the degradation of phenanthrene in either the rhizosphere or the nonrhizosphere after P. indica colonization. Although the low bioavailability of cadmium in the rhizosphere restricted its transportation into the stem, P. indica colonization in plants effectively increased cadmium accumulation in roots in soil co-contaminated with cadmium and phenanthrene. Conclusions: In conclusion, this work provides a theoretical basis for the use of P. indica combined with M. sativa for the remediation of PAH-metal co-contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document