scholarly journals Proliferation of biomass and its impact on the operation of a submerged membrane bioreactor

2020 ◽  
Vol 145 ◽  
pp. 02076
Author(s):  
Wenzhong Liang ◽  
Zhipeng Zhuang ◽  
Yutao Lei ◽  
Zhihua Pang ◽  
Weijian Zhou

The aim of this work was to investigate the biomass proliferation and its impact on the operation of a submerged membrane bioreactor (sMBR). A programmable logic controller (PLC) was used to control the process of the sMBR with no discharge of sludge. When MLSS was 9670 mg/L and the solid retention times (SRT) ranged from 20 to 40 days, the optimal removal efficiencies of COD, NH3-N, TP were 93.89%, 93.02%, 80.57%, respectively. Accompanying with the decreasing of the sludge loading, the substrate and nutrition were insufficient in the sMBR, leading to endogenous respiration of the activated sludge, which decreased the activity of sludge and resulted in the death of more microorganisms.

2012 ◽  
Vol 610-613 ◽  
pp. 1426-1431 ◽  
Author(s):  
Yuan Hong Ding ◽  
Qing Wang ◽  
Hong Qiang Ren

a submerged membrane bioreactor was used to treat the effluent of a pharmaceutical wastewater treatment system, the treated water is rich in ammonia nitrogen and organic compounds (NH4-N, averaged in 78.1 mg/L; COD, averaged in 189.5 mg/L), the final effluent of membrane bioreactor was stably below 50 mg/L COD and 40 mg/L NH4-N respectively, the activity of nitrifying bacteria was inhibited by high concentrations of organic compounds and ammonia nitrogen, a rapid declination of filtration was probably resulted form high concentrations of organic compounds and biomass.


2017 ◽  
Vol 77 (4) ◽  
pp. 979-987 ◽  
Author(s):  
Shengnan Xu ◽  
Minghao Sun ◽  
Allen Thompson ◽  
Zhiqiang Hu

Abstract Melamine is recalcitrant and toxic to bacteria in conventional activated sludge systems. In this study, we investigated the degradation and toxicity of melamine in a membrane bioreactor (MBR) system operated at high activated sludge concentrations (∼8.5 g TSS/L). Melamine was dosed at 3 mg/L for about 100 days. The average melamine removal efficiency in the MBR system was 20 ± 11%. Meanwhile, batch studies showed the acclimated sludge from the MBR had higher removal efficiencies after the depletion of readily biodegradable substrate (acetate) while non-acclimated sludge did not remove any melamine. As acclimated sludge had removal efficiencies ranging from 33 ± 6% (by 1.7 g TSS/L biomass) to 41 ± 10% (by 8.5 g TSS/L biomass), microbial specialists with unique hydrolytic enzymes in the acclimated sludge were likely responsible for melamine degradation. Since bacteria prefer to use readily biodegradable substrates for growth in the MBR, the population of microbial specialists capable of degrading melamine or the capability of cometabolism appeared not to increase with an increase in biomass concentration. Nevertheless, because of high sludge concentrations and thus low mass ratio of toxic melamine to biomass in the MBR, the long-term melamine exposure did not affect MBR activated sludge performance.


2004 ◽  
Vol 4 (1) ◽  
pp. 135-142 ◽  
Author(s):  
H. Shin ◽  
S. Kang ◽  
C. Lee ◽  
J. Lim

The submerged membrane bioreactor is one of the recent technologies for domestic wastewater treatment. In this study, the performance of the pilot-scale submerged membrane bioreactor coupled with sequencing batch reactor (SM-SBR) was investigated. The reactor was operated in sequencing batch modes with a 3-hour cycles consisting of anoxic and aerobic conditions to treat organics, nitrogen and phosphorus. Despite large fluctuations in influent conditions, COD removal was found to be higher than 95%. Sufficient nitrification was obtained within a few weeks after start-up and during the stable period. Moreover, complete nitrification occurred despite of short aeration time. Total nitrogen (TN) removal efficiency was up to 85%. The insufficient organic loading caused by the membrane fouling led to the increase of HRT, leading to endogenous respiration and/or deactivation of nitrifying microorganisms. DGGE patterns confirmed the shift in microbial community structure. The ammonia-oxidizers (i.e. Nitrospira) became dominant in the mixed liquor during long-term operations. Nitrification and denitrification processes were greatly affected by the temperature, while organic removal and phosphorus removal efficiencies were relatively stable below 15°C.


2006 ◽  
Vol 18 (5) ◽  
pp. 897-902 ◽  
Author(s):  
Shui-li YU ◽  
Fang-bo ZHAO ◽  
Xiao-hui ZHANG ◽  
Guo-lin JING ◽  
Xiang-hua ZHEN

2018 ◽  
Vol 31 ◽  
pp. 03017
Author(s):  
Fahmi Arifan ◽  
FS Nugraheni ◽  
Niken Elsa Lianandaya

The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).


Sign in / Sign up

Export Citation Format

Share Document