scholarly journals Application of fiber-reinforced concrete in high-rise construction

2020 ◽  
Vol 164 ◽  
pp. 02005
Author(s):  
Aleksandr Ischenko ◽  
Anastasia Borisova

In this research, we study the use of fiber-reinforced concrete, including steel fiber-reinforced concrete in the construction of outrigger floors of a high-rise building. The definition and classification of fiber-reinforced concrete as a construction material, the methodology for calculating high-rise buildings using fiber-reinforced concrete, the advantages and disadvantages of this composite material, and the specifics of its use are formulated. The domestic and foreign experience in use of fiber-reinforced concrete is analyzed. The rationale for its use on the experience of construction of residential building in seismically active regions is given. A comparative analysis of concrete and fiber concrete use in the outrigger floors’ construction is carried out.

2020 ◽  
Vol 8 (6) ◽  
pp. 5459-5463

Concrete is the most significant material for construction and by incorporation of various industrial by products may improve its properties. Normally fine aggregates have been obtained from natural sources like river beds, now days there is a lot of scarcity for getting natural aggregates. So to overcome this problem, aggregates are partially replaced with alternative materials like bottom ash, recycled aggregates and some natural aggregates .In present study, fine aggregate was replaced with bottom ash and steel fibres are used to improve strength characteristics of concrete. M25 grade concrete was prepared for control specimens, and also bottom ash based fiber reinforced concrete specimens were prepared in different proportions 0%, 10%, 20%, 30% and 40% with bottom ash by weight of fine aggregate and a 1.0% and 1.5% of steel fibers were added by weight of cement. To examine bottom ash based steel fiber reinforced concrete specimens were tested under flexural, split tensile, and compression. The mechanical property of bottom ash based steel fiber reinforced concrete was compared with control mix to examine optimal combination of bottom ash and fibers. It was noticed that 10% replacement of bottom ash has shown the maximum improvement in Compressive, split tensile and flexural strength. Hence, bottom ash based steel fiber reinforced concrete can be used as construction material.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document