scholarly journals Research on influence of welding root node coupling on welding deformation of large mining dump truck frame

2020 ◽  
Vol 165 ◽  
pp. 06006
Author(s):  
Heping Xie

Taking the frame of large-scale mining dump truck as the research object, it established the model of coupling or not of T-joint welding root by the finite element analysis, and analyzed the deformation of coupling or not of T-joint welding root. The deformation trend of the two cases is the same, which verifies the correctness of the prediction results of deformation. The results show that the maximum deformation occurs at the arc starting welding of the vertical plate, and the error between the simulation results and the test results is small. At the same time, the deformation error of gantry frame and hinge-hole at the key position can meet the production requirements, which is of great significance to the field production.

2014 ◽  
Vol 707 ◽  
pp. 381-385
Author(s):  
Pei Ming Zhang ◽  
Qing Rong Zhang ◽  
Wei Chun Zhang

Mining Dump truck frame is a key part of the vehicle, in this paper the finite element model of the frame was built in UG software, and then the model was imported into ANSYS Workbench. The paper carried on the statics analysis of the frame under the bending and the torsion condition, and carried on modal analysis under a free state. Through the results of analysis, the design requirements such as the stress condition and each order natural frequency of the frame were verified.


2013 ◽  
Vol 325-326 ◽  
pp. 476-479 ◽  
Author(s):  
Lin Suo Zeng ◽  
Zhe Wu

This article is based on finite element theory and use ANSYS simulation software to establish electric field calculation model of converter transformer for a ±800kV and make electric field calculation and analysis for valve winding. Converter transformer valve winding contour distribution of electric field have completed in the AC, DC and polarity reversal voltage.


Author(s):  
Malcolm H. Ray

A method of comparing two acceleration time histories to determine whether they describe similar physical events is described. The method can be used to assess the repeatability of full-scale crash tests and it can also be used as a criterion for assessing how well a finite-element analysis of a collision event simulates a corresponding full-scale crash test. The method is used to compare a series of six identical crash tests and then is used to compare several finite-element analyses with full-scale crash test results.


2013 ◽  
Vol 367 ◽  
pp. 122-125
Author(s):  
Guang Xin Wang ◽  
Xiang Shun Bu ◽  
Lin Jie Li ◽  
Li Li Zhu

As one of the most important load-bearing parts, coupler knuckle has a direct relationship with the safety in operation and reliability of the freight trains. A new forged coupler knuckle is made in order to meet the challenge to export ore train to Australia. Using the finite element technique, the stress characteristics of forged coupler knuckle under 1225kN load in tension and 1500kN compression load are evaluated. Simplify the load and boundary condition depend on the real working situation, the numerical simulation results coincide with experimental data.


2012 ◽  
Vol 538-541 ◽  
pp. 2953-2956
Author(s):  
Ya Li ◽  
Guang Sheng Ren

The static and stability analysis of steel structure were taken according to steel structure work platform’s requirements and structural characteristics in a subway parking space by using the software model which is established by Pro/E software and implanted into the finite element analysis software ANSYS Workbench. The maximum deformation and stress in design load of the steel structure were calculated and the linear stress strength analysis of the key parts was carried out, also both the analysis and testing of the supporting pillar’s stability were performed. The results show that the structure model established by Pro/E and the calculation method are reasonable. Moreover, the calculation results are of high accuracy. The profile size is properly chosen and the structure bearing capacity and deformation meet the design requirements.


2011 ◽  
Vol 368-373 ◽  
pp. 1595-1599
Author(s):  
Xiu Li Wang ◽  
Jun Jie Li

The numerical simulation calculation on round steel-tubes reinforced with CFRP sheets was done through the large-scale finite element software ANSYS. In this research, four factors were comparatively analyzed so as to obtain the influence of them on ultimate axial tensile bearing capacity of steel-tubes. These four factors are longitudinal reinforcement length rate , thickness , elastic modulus and circumferential reinforcement ways of CFRP sheets. The results show that the ultimate axial tensile bearing capacity of steel-tubes strengthened with CFRP sheets is enhanced significantly and the reinforcement effect is very good.


2011 ◽  
Vol 2-3 ◽  
pp. 1008-1013
Author(s):  
Xiao Guang Yu ◽  
L. Yang

Through the cracking failure analysis of dump truck frame with large electric wheel, the static and dynamic frame analysis of performance evaluation are conducted by the finite element analysis method. From the strength and stiffness analysis frame structure in the weak links, it is easy to find out crack the parts and the reasons with frame, and through the modal analysis and random vibration and fatigue strength analysis the danger frequency of the frame induced by road encourage is obtained, which can prevent the occurrence of frame cracks and provide a foundation for further optimization of the frame.


2009 ◽  
Vol 09 (01) ◽  
pp. 85-106
Author(s):  
N. PRASAD RAO ◽  
S. J. MOHAN ◽  
R. P. ROKADE ◽  
R. BALA GOPAL

The experimental and analytical behavior of 400 kV S/C portal-type guyed towers under different loading conditions is presented. The portal-type tower essentially consists of two masts extending outward in the transverse direction from the beam level to the ground. In addition, two sets of guys connected at the ground level project outward along the longitudinal axes and converge in the transverse axes. The experimental behavior of the guyed tower is compared with the results of finite element analysis. The 400 kV portal-type guyed towers with III and IVI type insulator strings are analyzed using finite element software. Full scale tower test results are verified through comparison with the results of the finite element analysis. The initial prestress in the guys is allowed to vary from 5% to 15% in the finite element modeling. The effect of prestress variation of the guys on the tower behavior is also studied.


2014 ◽  
Vol 609-610 ◽  
pp. 1088-1093
Author(s):  
Lei Li ◽  
Xiao Feng Zhao ◽  
Yang Yu ◽  
Dian Zhong Wen ◽  
Jing Ya Cao ◽  
...  

A silicon bridge magnetic sensor based on cantilever beam is presented in this paper. Thesensor is composed of the Wheatstone bridge that made up of nano-polysilicon thin-film transistors(TFTs) and a ferromagnetic magnet adhered to the free end of cantilever beam. Through building thesimulation model, the finite element analysis of the sensor is carried out by using ANSYS software.The results show that this sensor can realize the measurement to the external magnetic field. Accordingto the simulation results, fabrication and packaging of the sensor chip are achieved by using the microelectromechanical system (MEMS) technology. Experiment result shows that when the supply voltageis 3.0 V, the sensitivity of the sensor is 94 mV/T.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


Sign in / Sign up

Export Citation Format

Share Document