scholarly journals Transport externalities of bus stations produced by Greenhouse Gas (GHG)

2020 ◽  
Vol 167 ◽  
pp. 04001
Author(s):  
M Córdova-Suárez ◽  
E Barreno-Ávila ◽  
P Villacrés-Cevallos ◽  
O Ruíz-Robalino

It is established that the interprovincial transportation in bus terminals of the Cities such as Ambato, Riobamba, Salcedo, Latacunga and Guaranda have contributed to the build-up of external costs of Greenhouse Gases (GHG) The climate change costs are calculated by multiplying the carbon emissions by the cost factor. To quantify the GHG emissions, this study has taken into account of both the direct and indirect sources of the Greenhouse Gas Protocol (GHG), as well as the ISO 14064.1: 2006 standard. In view thereof, it was found that the 11 bus terminals of the five cities, namely Latacunga, Riobamba Salcedo, Ambato, Guaranda-which accounts for around 3225 buses, had accounted for the emissions of 25,746.8 tCO2eq, 37,404.6 tCO2eq, 8,762.7 tCO2eq, 92,364.9 tCO2eq, 31,990.3 tCO2eq, respectively. Simply, the average load of such pollution produced per vehicle was 60.8 tCO2eq. and the total emissions were 196,269.3 tCO2eq with an estimated GHG contamination cost of €27,477,702 per year.

1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).


2022 ◽  
Author(s):  
David Finlay

The human caused rise in atmospheric greenhouse gases has been seen as the driver of both climate change and ocean acidification. However recent peer reviewed papers show that, while GHG emissions are part of the problem, the primary driver of both climate change and ocean acidification is human caused ecological degradation. Curbing greenhouse gas emissions, to date, has been an abject failure but addressing ecological degradation within the remaining time frame is safe and achievable.


2009 ◽  
Vol 34 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Parag Dubey

Climate change is a global environmental problem that has been associated with increasing concentrations of greenhouse gases (GHGs). Forest products definitely play a significant role in mitigating the adverse effects of climate change, by increasing the level of carbon removals from the atmosphere. Different corporate governance systems impact the ability of industries to adopt and transform their activities to meet issues associated with climate change. Until recently, relatively little has been done, to measure the contribution made by forest-based industries to mitigate climate change. This paper focuses on outlining adaptive management strategies that enhance the ability of forests and their products to adapt to climate change and mitigate its effects through increased carbon sequestration and storage. Developing carbon credit markets that motivate true reductions in carbon emissions must address all carbon pools and their GHG emissions. To be effective in this area, the Indian management community must have a voice in defining the markets and policies, to the extent that it is of strategic interest to the future of the companies and the society. The Indian forest-based industry has a reasonable potential to sequester. However, domestic manufacturing is highly fragmented and unorganized, generally inefficiently managed, has low product quality, and lacks standardization. Nonetheless, there are various ways to positively influence the carbon balance; including sink enhancements and increasing the market share of the existing wood products. Globally, forest market is undergoing dramatic changes. The natural advantage in the forestry sector is gradually shifting away from countries with the highest levels of forest resources to countries where trees grow to commercial maturity at the fastest rate and where the cost of converting them into products is the lowest. It is thus obvious that many foreign companies view India as a country with a strong commercial appeal, both as an emerging market and as an economic partner in possible collaboration. These provide a unique link for dealing with climate change through the competitiveness of Indian forest industries and its livelihood impact. The paper advocates a greater use of wood products in all forms, substituting fossil-fuelbased products, thus mitigating carbon emissions. A policy that lowers the cost of wood, for example, could motivate manufacturers and consumers to select wood products. Many companies are facing increasing pressure by governments, shareholders, and other stakeholders to reduce their CO2 emissions. There is a need to develop a framework that conceptualizes a company's CO2 strategy as the focus on one or a combination of several strategic objectives. Companies are looking for improved communication and a clear regulatory policy from the government to provide certainty so that they know where to focus their emission-saving efforts. Improved perception of wood through a better knowledge of its environmental, sanitary, and health properties by creating a ‘wood culture,’ needs social advertising support in the form of CSR activities by Indian corporations.


Author(s):  
Samantha To ◽  
Courtney Coughenour ◽  
Jennifer Pharr

Annually, millions of tonnes of leftover edible foods are sent to landfill. Not only does this harm the environment by increasing the release of greenhouse gases which contribute to climate change, but it poses a question of ethics given that nearly 16 million households are food insecure in the US, and hundreds of millions of people around the globe. The purpose of this study was to document the amount of food diverted from landfill in the pilot year of a convention food rescue program and to determine the amount of greenhouse gas (GHG) emissions avoided by the diversion of such food. In the pilot year of the convention food rescue program 24,703 kg of food were diverted. It is estimated that 108 metric tonnes of GHG emmisions were avoided as a result, while 45,383 meals for food insecure individuals were produced. These findings have significant implications for public and environmental health, as GHG emissions have a destructive effect on the earth’s atmosphere and rescued food can be redistributed to food insecure individuals.


2005 ◽  
Vol 31 ◽  
pp. 279-309 ◽  
Author(s):  
Axel Gosseries

Evidence provided by the scientific community strongly suggests that limits should be placed on greenhouse gas (GHG) emissions. This means that states, firms, and individuals will have to face potentially serious burdens if they are to implement these limits. Which principles of justice should guide a global regime aimed at reducing greenhouse gas (GHG) emissions originating from human activities, and most notably from CO2 emissions? This is both a crucial and difficult question. Admittedly, perhaps this question is too ambitious, given the uncertainties and complexities characterizing the issue of climate change. Yet, rather than listing them all at this stage, let us address the question in a straightforward manner, introducing some of these complexities as the need arises.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


Author(s):  
Mehmetali AK ◽  
◽  
Aslı GÜNEŞ GÖLBEY ◽  

One of the most important environmental problems in today's world is climate change caused by greenhouse gases. Due to the increase in CO2 emissions from greenhouse gases, climate change is increasing and moving towards the point of no return. In this process, many ideas have been developed to combat climate change. One of these ideas is that cities should be sustainable. In order for cities to be sustainable, activities such as expanding the use of renewable energy resources in cities, increasing green and environmentally friendly transportation, improving air quality, and minimizing carbon emissions should be carried out. In this context, open green areas have important effects in terms of improving air quality, reducing the heat island effect in cities and especially keeping carbon emissions to a minimum. Thus, the efficiency and productivity of carbon capture and storage of green areas come to the fore. There are several methods to measure the carbon capture and storage efficiency of green areas and to evaluate their efficiency. In this study, the methods used in determining open green areas in cities and evaluating biomass productivity in these areas will be examined.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Philip J. Ball

Abstract A review of conventional, unconventional, and advanced geothermal technologies highlights just how diverse and multi-faceted the geothermal industry has become, harnessing temperatures from 7 °C to greater than 350 °C. The cost of reducing greenhouse emissions is examined in scenarios where conventional coal or combined-cycle gas turbine (CCGT) power plants are abated. In the absence of a US policy on a carbon tax, the marginal abatement cost potential of these technologies is examined within the context of the social cost of carbon (SCC). The analysis highlights that existing geothermal heat and power technologies and emerging advanced closed-loop applications could deliver substantial cost-efficient baseload energy, leading to the long-term decarbonization. When considering an SCC of $25, in a 2025 development scenario, geothermal technologies ideally need to operate with full life cycle assessment (FLCA) emissions, lower than 50 kg(CO2)/MWh, and aim to be within the cost range of $30−60/MWh. At these costs and emissions, geothermal can provide a cost-competitive low-carbon, flexible, baseload energy that could replace existing coal and CCGT providing a significant long-term reduction in greenhouse gas (GHG) emissions. This study confirms that geothermally derived heat and power would be well positioned within a diverse low-carbon energy portfolio. The analysis presented here suggests that policy and regulatory bodies should, if serious about lowering carbon emissions from the current energy infrastructure, consider increasing incentives for geothermal energy development.


2021 ◽  
Vol 47 (2) ◽  
pp. 332-348
Author(s):  
Tariq Umar

Reduction in emissions is the key to tackle climate change issues and achieve environmental sustainability. The Gulf Cooperation Council member countries however, not only generate the highest quantity of MSW/capita when compared globally but also in most of these countries such waste is just dumped at different landfill stations. In Oman, the total quantity of MSW stood at 2.0 million tonnes/year. The emission from this waste is estimated at 2,989,467 tonnes/year (CO2 Equivalent). This article attempts to develop frameworks that considered landfilling, composting, and recycling of MSW and compared the emissions of these frameworks. The framework (F2) which proposes the landfilling and composting process for the organic waste which normally goes to landfills results in an increase of emissions by 7% as compared to landfill practice. Similarly, the samples of MSW collected in Oman show a good amount of recycling waste. The framework (F3) which considers the landfill, composting, and recycling reduced the total Greenhouse Gas emissions from 2,989,467 tonnes/year to 2,959,735 tonnes/year (CO2 Equivalent); representing a total reduction of 1% in emissions. Although composting increases the emissions, however, considering composting and recycling will not only reduce the burden on landfills but will promote agricultural and industrial activates.


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


Sign in / Sign up

Export Citation Format

Share Document