scholarly journals Climate Change and Ocean Acidification: Are We Just Treating The Symptoms?

2022 ◽  
Author(s):  
David Finlay

The human caused rise in atmospheric greenhouse gases has been seen as the driver of both climate change and ocean acidification. However recent peer reviewed papers show that, while GHG emissions are part of the problem, the primary driver of both climate change and ocean acidification is human caused ecological degradation. Curbing greenhouse gas emissions, to date, has been an abject failure but addressing ecological degradation within the remaining time frame is safe and achievable.

2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Prue Taylor

Governance of the Earth’s global ecological commons creates unprecedented challenges for humanity. Our traditional Westphalian state system was not designed to respond to these global challenges and thus far it has failed to transform. Climate change is the current headline issue; 30 years on and we still swing between hope and despair about our collective ability to radically reduce greenhouse gas emissions. Related issues are beginning to vie for our response: ocean acidification, mass species extinction, land use change and freshwater scarcity. 


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2012 ◽  
Vol 63 (3) ◽  
pp. 269 ◽  
Author(s):  
J. A. Baldock ◽  
I. Wheeler ◽  
N. McKenzie ◽  
A. McBrateny

Organic carbon and nitrogen found in soils are subject to a range of biological processes capable of generating or consuming greenhouse gases (CO2, N2O and CH4). In response to the strong impact that agricultural management can have on the amount of organic carbon and nitrogen stored in soil and their rates of biological cycling, soils have the potential to reduce or enhance concentrations of greenhouse gases in the atmosphere. Concern also exists over the potential positive feedback that a changing climate may have on rates of greenhouse gas emission from soil. Climate projections for most of the agricultural regions of Australia suggest a warmer and drier future with greater extremes relative to current climate. Since emissions of greenhouse gases from soil derive from biological processes that are sensitive to soil temperature and water content, climate change may impact significantly on future emissions. In this paper, the potential effects of climate change and options for adaptation and mitigations will be considered, followed by an assessment of future research requirements. The paper concludes by suggesting that the diversity of climate, soil types, and agricultural practices in place across Australia will make it difficult to define generic scenarios for greenhouse gas emissions. Development of a robust modelling capability will be required to construct regional and national emission assessments and to define the potential outcomes of on-farm management decisions and policy decisions. This model development will require comprehensive field datasets to calibrate the models and validate model outputs. Additionally, improved spatial layers of model input variables collected on a regular basis will be required to optimise accounting at regional to national scales.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5514
Author(s):  
Seo-Hoon Kim ◽  
SungJin Lee ◽  
Seol-Yee Han ◽  
Jong-Hun Kim

A new government report on climate change shows that global emissions of greenhouse gases have increased to very high levels despite various policies to reduce climate change. Building energy accounts for 40% of the world’s energy consumption and accounts for 33% of the world’s greenhouse gas emissions. This study applied the LEAP (Long-range energy alternatives planning) model and Bass diffusion method for predicting the total energy consumption and GHG (Greenhouse Gas) emissions from the residential and commercial building sector of Sejong City in South Korea. Then, using the Bass diffusion model, three scenarios were analyzed (REST: Renewable energy supply target, BES: Building energy saving, BEP: Building energy policy) for GHG reduction. The GHG emissions for Sejong City for 2015–2030 were analyzed, and the past and future GHG emissions of the city were predicted in a Business-as-Usual (BAU) scenario. In the REST scenario, the GHG emissions would attain a 24.5% reduction and, in the BES scenario, the GHG emissions would attain 12.81% reduction by 2030. Finally, the BEP scenario shows the potential for a 19.81% GHG reduction. These results could be used to guide the planning and development of the new city.


1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).


2012 ◽  
Vol 15 (1) ◽  
pp. 201-206 ◽  
Author(s):  
José Goldemberg ◽  
Patricia Maria Guardabassi

The historical responsibility of countries listed in the Annex I of the Convention on Climate Change has been used extensively as a justification for the lack of action of countries not included in Annex I to reduce their greenhouse gas emissions. We analyzed the contribution of non-Annex I countries to the CO2 emissions in the period 1850 - 2006 to assess their relative contribution to total CO2 emissions. In the period 1980 - 2006 non-Annex I countries represented 44% of the total but this contribution increased in the period 1990 - 2006 to 48%. If we extrapolate present trends to 2020 they will represent 56% in the period 1990 - 2020. The "historical responsibility" of Annex I countries is therefore decreasing. If we take 1990 as the starting year in which the Climate Convention recognized clearly that greenhouse gases are interfering dangerously with the climate system, it becomes very difficult to attribute "blame" and "guilt" to Annex I for their historical contributions. It becomes also quite clear the need of non-Annex I countries to engage with Annex I countries in the effort to reduce emissions. The Copenhagen Accord has no mention of "historical responsibilities".


2021 ◽  
Vol 20 (4) ◽  
pp. 585-606
Author(s):  
Elena-Mirela Nichita ◽  
◽  
Elena Nechita ◽  
Cristina-Lidia Manea ◽  
Alina Mihaela Irimescu ◽  
...  

Research Question: This paper aims to analyse the impact of reported greenhouse gas (GHG) emissions on financial performance of companies operating in the chemical industry from Central-Eastern Europe over the period 2015-2019. Motivation: Currently, the climate change and global warming have become highly topical due to their progressively visible destructive effects worldwide on the environment, society, and economic activity. Idea: To offer the suitable information to all its stakeholders, each company should identify the necessary information, measure it, make it useful, and take reasonable steps to ensure that it’s accurate; our research investigates the effect of reported greenhouse gas emissions on return on sales, as a measure of business performance. Data: The paper is based on panel data extracted from non-financial and/or annual reports for the top 10 largest companies operating in the chemical industry geographically located in Central-Eastern Europe covering the time frame 2015-2019. The final sample consists of 34 firms and 134 firm-year observations. Tools: A multiple linear regression model was designed and applied, having return on sales as the dependent variable and GHG emissions as the independent variable. Findings: The findings of our study confirm that a lower level of GHG emissions will generate an increase in return on sales, consequently, the environmental performance reported in terms of controlling for GHG emissions enhances the financial performance measured as return on sales ratio. Contribution: The paper contributes to the literature on climate change, revealing a negative, but significant effect of GHG emissions on financial performance and endorsing that companies which today pay less attention to this global concern, tomorrow will face difficulties in terms of sales.


2020 ◽  
Vol 167 ◽  
pp. 04001
Author(s):  
M Córdova-Suárez ◽  
E Barreno-Ávila ◽  
P Villacrés-Cevallos ◽  
O Ruíz-Robalino

It is established that the interprovincial transportation in bus terminals of the Cities such as Ambato, Riobamba, Salcedo, Latacunga and Guaranda have contributed to the build-up of external costs of Greenhouse Gases (GHG) The climate change costs are calculated by multiplying the carbon emissions by the cost factor. To quantify the GHG emissions, this study has taken into account of both the direct and indirect sources of the Greenhouse Gas Protocol (GHG), as well as the ISO 14064.1: 2006 standard. In view thereof, it was found that the 11 bus terminals of the five cities, namely Latacunga, Riobamba Salcedo, Ambato, Guaranda-which accounts for around 3225 buses, had accounted for the emissions of 25,746.8 tCO2eq, 37,404.6 tCO2eq, 8,762.7 tCO2eq, 92,364.9 tCO2eq, 31,990.3 tCO2eq, respectively. Simply, the average load of such pollution produced per vehicle was 60.8 tCO2eq. and the total emissions were 196,269.3 tCO2eq with an estimated GHG contamination cost of €27,477,702 per year.


Author(s):  
Ju. M. Zhukova ◽  
M.Yu. Zavarzina ◽  
T.M. Prokhorova

Climate change, namely global warming, remains at the forefront of the global environmental debate. At present, the international Paris Agreement, which aims to maintain the average temperature of the planet, is in force. The Russian Federation develops, annually updates, publishes and provides a national inventory of anthropogenic emissions and removals by sinks of all greenhouse gases. Each region shall annually conduct an inventory of greenhouse gas emissions and removals on its territory. According to international recommendations and methods for estimating greenhouse gas emissions and removals, the base year should be 1990, because then it becomes possible to carry out an analysis for a multi-year period. Different methodological bases and instructions of the Russian Ministry of Natural Resources are used to estimate GHG emissions and removals. Inventory of greenhouse gas emissions and removals in Kaluga region for the period 1990, 2012-2017 was conducted by JSC "Research Institute of Atmosphere", and for 2018 – LLC Ecoanalitika. The amount of absorbed greenhouse gases was considered for such land categories as forest land, arable land, fodder land, lands of settlements and special purpose lands. GHG emissions were estimated by the sectors "Energy" (Section I), "Industrial Processes and Product Use" (PIP) (Section II), "Agriculture" (Section III) and "Waste" (Section IV). The calculation of greenhouse gas emissions may be of varying complexity. The higher the level of complexity, the more accurate the results. Presented data for 1990, 2012-2018 show that GHG emissions excluding absorption increased by 5 per cent, while emissions excluding absorption decreased by 38 per cent. The presented chart shows that the largest amount of emissions is in the Energy Sector. The results of the assessment of GHG emissions and removals should be used in planning the development of the annual inventory.


Author(s):  
Hanna Pondel

Changes in seasonal weather cycles, a growing number of extreme phenomena, an upward trend in temperature and changes in the distribution of rainfall, significantly affect the functioning and effectiveness of agriculture. However, agriculture plays a major role in the emergence and intensification of these phenomena. The aim of the article is to present, analyse and evaluate the relations between agriculture and climate, with particular emphasis on greenhouse gas (GHG) emissions from agriculture in these relations. A cause-and-effect analysis was conducted based on literature studies, using the descriptive statistics method and analysis of the development trend. The basis for analysis were data on GHG emissions in the European Union (EU-28). The contribution of agriculture to the EU’s greenhouse gas emissions, albeit slightly but still increasing in recent years. The level of this emission is determined primarily by the type of agricultural activity conducted – animal production is definitely responsible for higher emissions than plant production. It is difficult to present a universal model of agricultural adaptation to climate change and a set of actions limiting the negative impact of agricultural production on climate. This is hindered by both the specificity of the agricultural sector and the large diversity of local conditions and applied farming practices. The opportunity to increase the effectiveness of actions taken may be a better connection between the implementation of objectives including the reduction of the causes and negative consequences of climate change and the objectives of sustainable agricultural development.


Sign in / Sign up

Export Citation Format

Share Document