scholarly journals Determination of the limiting angle of inclination of tubular belt conveyor

2020 ◽  
Vol 168 ◽  
pp. 00047
Author(s):  
Ruslan Kiriia ◽  
Andrii Smirnov ◽  
Tetiana Zhyhula ◽  
Todor Zhelyazov

Currently, the widespread use of tubular belt conveyors is constrained by insufficient justification of the conveyor parameters. In the work, on the basis of the theory of the limiting equilibrium state of bulk load, equations of equilibrium of load on the belt of an inclined tubular conveyor are obtained. It is assumed that the belt was a rigid cylinder filled with bulk material in extreme equilibrium. Based on the obtained equilibrium equation, the analytical dependences of the limiting angle of inclination of the belt conveyor with a tubular belt on the degree of unfilling with the bulk load of the belt and the properties of the bulk load are found. From the analysis of these dependencies it follows that the limiting angle of inclination of the tubular belt conveyor depends on the angle of internal friction of the transported load, the angle of friction of the load on the conveyor belt, the angle of unfilling of the belt with load and does not depend on the radius of the conveyor belt.

2019 ◽  
Vol 109 ◽  
pp. 00035
Author(s):  
Ruslan Kiriia ◽  
Tamara Mishchenko

The article developed a mathematical model of the stress-strain state of a tubular conveyor belt filled with bulk load. In this case, the belt is considered as a thin elastic inextensible cylindrical shell, and the bulk load in the belt is in the limit state. A system of differential equilibrium equations for a tubular belt with a bulk load with respect to forces and bending moments in a belt was obtained, which, when simplified, was reduced to a fourth-order differential equation for belt deflections. Based on this mathematical model, analytical dependencies of the deflections of the tubular conveyor belt on the parameters of the conveyor, the radius and properties of the belt, as well as the properties of the bulk load are obtained and analyzed. As a result, the maximum allowable distance between the roller supports of the tubular conveyor is determined. It was found that the allowable distance between the roller bearings is directly proportional to the tension of the belt and inversely proportional to the square of the radius of the belt and the bulk weight of the load. The research results can be used in the design of tubular belt conveyors transporting bulk load.


2011 ◽  
Vol 101-102 ◽  
pp. 755-758 ◽  
Author(s):  
Chun Sheng Yang

Belt conveyors are the major equipments for bulk material transportation.This paper analyses the static and dynamic behaviours of the belt, and establishes the dynamic elastic modulus. By analyzing the characteristics of the Kelvin and Maxwell viscoelastic model, the former is selected as the conveyor belt model as it can more realistically reflect the mechanical characteristics of the conveyor system. This paper introduces the development of the belt conveyor, and analyzes the current research situation at home and abroad.


2020 ◽  
pp. 87-98
Author(s):  
R.V. Kiriia ◽  
◽  
V.F. Monastyrskyi ◽  
A.M. Smirnov ◽  
D.A. Nomerovskyi ◽  
...  

One of the ways to reduce capital costs and shorten length of conveyor transport routes is to increase angle of the conveyor inclination. As practice shows, limit inclination angle of general-purpose belt conveyors transporting bulk loads is 18°- 22°, while angle of natural slope of ore and coal is 40° and 35°, respectively. Such a difference between the angles of bulk load slope and limit inclination angle of the belt conveyor transporting the bulk loads is explained by the belt vibration impacting on the state of the transported load during its moving along the belt conveyor idlers. When exposed to vibrations, the solid-yielding state of the granular medium passes into a free-dispersed state at which inertial forces of the particles exceed the forces of internal coulomb friction between the particles. Moreover, as experimental studies have shown, granular medium moves relative to the conveyor belt at anglesof conveyor inclination of 18°–22°, i.e. limit angle of inclination of the conveyor belt transporting bulk load does not exceed 18°–22°. Today, limit angle of inclination of the conveyor belt transporting bulk loads is not studied well. In this research, the authors tried to determine limit angle of inclination of the conveyor belt transporting bulk loads by considering different types of the idlers: with rigid line, damping idlers and suspension idler with rope line. Limit angle of the conveyor belt inclination was determined on the basis of the change in momentum theorem applied to the lump during its moving over the idler and with the assumption that a lump, while passing over the idler, began sliding along the conveyor belt. As a result, analytical dependences of limit angle of the conveyor belt inclination on the conveyor parameters (belt tension and speed), parameters of idlers (distance between them), length of the bulk load and coefficient of friction of the lump against the conveyor belt were obtained. The studies of the obtained dependences showed that belt conveyors with damping idlers featured the widest limit angle of inclination, and inclination angel of the belt conveyors with suspension idlers had the least value. In addition, it was found that with increase of the conveyor belt speed and weight of the transported lumps limit angle of the conveyor inclination decreased and increased with increase of the belt tension. Further, critical speed of the conveyor belt was determined at which piece of load began sliding along the conveyor belt at any angle of the conveyor inclination.


Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 284
Author(s):  
Chuanwei Zhang ◽  
Shirui Chen ◽  
Lu Zhao ◽  
Xianghe Li ◽  
Xiaowen Ma

Conveyor belts are key pieces of equipment for bulk material transport, and they are of great significance to ensure safe operation. With the development of belt conveyors in the direction of long distances, large volumes, high speeds, and high reliability, the use of inspection robots to perform full inspections of belt conveyors has not only improved the efficiency and scope of the inspections but has also eliminated the dependence of the traditional method on the density of sensor arrangement. In this paper, relying on the wireless-power-supply orbital inspection robot independently developed by the laboratory, aimed at the problem of the deviation of the belt conveyor, the methods for the diagnosis of the deviation of the conveyor belt and FPGA (field-programmable gate array) parallel computing technology are studied. Based on the traditional LSD (line segment detection) algorithm, a straight-line extraction IP core, suitable for an FPGA computing platform, was constructed. This new hardware linear detection algorithm improves the real-time performance and flexibility of the belt conveyor diagnosis mechanism.


Author(s):  
Sabri Bahrun ◽  
Mohd Shahrizan Yusoff ◽  
Mohamad Sazali Said ◽  
Azmi Hassan

Belt conveyors are generally used in mining plant areas, both surface and underground mines. The belt conveyor is mainly applied to transport the extracted bulk material from the mining site to delivery. The effectiveness of the extraction process depends on the reliability and durability of the conveyor belt system. In addition, conveyor performance is very important specially to control material flowability to prevent spills or other operational disturbances to optimize production throughput. However, the transfer chute and settling zone can cause some problems during the transfer process, such as material spills. This problem can reduce the function and performance of the conveyor belt. This paper discusses a design model to reduce the problem of spillage in the settling zone. The model was developed by compiling the previous defecting data from the durability of the conveyor system, then analyzed using Discrete Element Method (DEM) software and compared with bulk characteristics. The initial performance of certain conveyors is only capable of serving with an average production of 76% of the designed capacity while energy is consumed at full load. By applying the DEM simulation result, the blade gate can reduce the peak angle break in the depositional zone before exiting. After the analysis is completed using DEM, the conveyor increases the average production to 95% of the designed capacity. In conclusion, controlling the maximum belt load without spillage will reduce interruption on conveyor belt operation and maintenance costs therefore increase plant reliability and availability.


2015 ◽  
Vol 29 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Hakan Kibar

Abstract The direct shear test are widely used to measure the bulk material properties for economical design of bulk handling equipment and to estimate wall pressure inside storage structures, namely their bulk density, the angle of internal friction, shear strength, Poisson ratio, and lateral pressure ratios are required. Tests were conducted at thirty six different shear speeds (between 0.30-1.00 mm min-1) and three different normal stresses were applied (60, 120 and 180 kPa). The angle of internal friction, Poisson ratio, and lateral pressure ratios demonstrated fluctuations depending on the shear speeds. The results of the principal component analysis indicated that the first three principal components accounted for 97.40% of the total variability among the thirty six different shear speeds for all the traits investigated. The first principal component was the most important. In the result of principal component analysis, the shear speeds were divided into seven clusters. The pressures were decreased and increased with the change of the angle of internal friction and the lateral pressure ratio. The data obtained from the study will be useful in the structural design of dry bean bins to calculate loads on bins from the stored material and grain handling equipment.


Author(s):  
A. I. Nizhegorodov

The article consistently sets forth the material of the fourth lecture on the course “Theory of hoisting-and-transport, construction, road vehicles and equipment”, which included the following questions: transfer of traction efforts by flexible elements using the example of a thin inextensible thread, derivation of the Euler formula, flexible links and hoisting-and-transport, construction, road vehicle and equipment (HTCRVE) systems; the operation and calculation of the belt brake; the node attaching the rope to the drum and its calculation; the resistance in the cable system of the movement mechanism of the of the tower crane; the determination of the resistances in the cargo truck cable system of the movement mechanism; the transmission of traction by friction in the belt conveyors; the calculation of the drive station drive power of the belt conveyor while transmitting traction by friction.


2020 ◽  
Vol 10 (13) ◽  
pp. 4436
Author(s):  
Fei Zeng ◽  
Cheng Yan ◽  
Qing Wu ◽  
Tao Wang

For the conveyor belt, variable material flow influences the energy efficiency of the speed control technology significantly. The fluctuation of material flow on the conveyor belt will lead to the detrimental vibrations on both the belt and the conveyor while the conveyor works at certain speeds. In order to improve the model inaccuracy caused by the uniform bulk material flow assumption in the current conveyor belt model, the paper establishes a high-precision dynamic model that can consider speed control of a conveyor belt under non-uniform bulk material transportation. In this dynamic model, a non-uniform bulk material distribution model is firstly proposed based on laser scanning technology. Then, a high-precision longitudinal dynamic model is proposed to investigate the dynamic behavior of a belt conveyor. Considering the micro-units of actual load on a conveyor belt, it can well describe the transient state of the conveyor belt. These models can be used to determine the optimal speed for safety and energy conservation in operation. Experimental results are used to validate the proposed dynamic model for analyzing belt mechanical behavior under non-uniform bulk material distribution on the belt. The results show that the proposed models can be used for optimizing the operating procedures of belt conveyor systems.


2019 ◽  
Vol 109 ◽  
pp. 00096
Author(s):  
Andrii Smirnov ◽  
Tamara Mishchenko

The article presents methods for determining loads on rollers of a six-roll support of a tubular belt conveyor, based on the equilibrium laws of elastic cylindrical plates and shells filled with a freight. In this case, the forces acting on the rollers of the tubular conveyor are the sum of the forces caused by the weight and expansion of the bulk load, the weight and bend of the belt, as well as the inertial forces associated with the curvature and the deflection of the belt under the weight of the bulk load. The dynamic forces acting on the rollers as the belt moves are determined from the equation of the oscillations of a heavy flexible string using the Ritz method. As a result of the research, analytical dependences of the forces acting on the rollers of the six-roller support of the tubular conveyor on the parameters of the conveyor, the belt, the properties of the bulk load and the radius of curvature of the conveyor are obtained, and an assessment of the component these forces is given. The results can be used to determine the parameters of the tubular conveyors rollers and increase the service life of the rollers.


2019 ◽  
Vol 109 ◽  
pp. 00057
Author(s):  
Vitalii Monastyrskyi ◽  
Serhii Monastyrskyi ◽  
Borys Mostovyi

The paper considers problems concerning optimization of service life of a conveyor belt in terms of its bulk material loading. Statement of the problem of belt life optimization is in the determining minimum of difference between squared velocity of a conveyor belt and projection of horizontal component of the load velocity when it contacts a belt onto the belt motion plane. The problem was solved numerically taking into consideration the objective function, varied parameters, and their limitation. Cases of direct-flow loading and loading with the help of special devices with straight and curved trough profiles have been analyzed. Regularities of changes in the belt service life due to significant factors in terms of direct-flow loading and loading with special device have been obtained to perform comparative analysis of different variants in terms of similar value of the objective function. The variants with maximum belt life and minimum objective function have been selected. For short conveyors, in terms of direct-flow loading, belt life decreases by 1.5–2.0 times comparing to the use of a loading device, and in terms of long conveyors, it decreases by 5–6 times, if value of the objective function is 0.5–1.0 m2/s2.


Sign in / Sign up

Export Citation Format

Share Document