scholarly journals A comparative study and graphical analysis in designing and operation of Solar Thermal circular concentrator for enhancing efficiency of solar concentrating system

2020 ◽  
Vol 170 ◽  
pp. 01001
Author(s):  
Mohan Kulkarni ◽  
Sunil Dingre ◽  
Chandrakant Kulkarni

The present line concentrator system with constant concentration ratio exhibits rise in temperature of working media, however if the difference between outlet and inlet temperature of working media is large then they exhibit lower efficiency. Also the rate of fall of efficiency with increase in its temperature difference is high. To overcome this problem it is proposed to have a variable concentration ratio concentrator system. The variable concentration ratio is achieved by employing receiver consisting of the pipes having different diameters; with the larger diameter pipe at start followed by small diameter receiver. Thus, the concentrator system will have different diameter receivers offering variable concentration ratio system. This concept is confirmed with the help of G.O. Lof, Fester and Duffie Beck paper. The present paper describes above concept by graphical analysis carried out for the newly proposed circular line concentrator with variable concentration ratio. The results of superimposition of graphs leads to confirmation for the promisingly use of variable concentration ratio receivers for enhancing efficiency of solar concentrating system.

2017 ◽  
Vol 4 (8) ◽  
pp. 7533-7545 ◽  
Author(s):  
C.N. Kulkarni ◽  
R.S. Jahagirdar ◽  
M.I. Talib ◽  
G.S. Tasgaonkar

Author(s):  
Asish C. Nag ◽  
Lee D. Peachey

Cat extraocular muscles consist of two regions: orbital, and global. The orbital region contains predominantly small diameter fibers, while the global region contains a variety of fibers of different diameters. The differences in ultrastructural features among these muscle fibers indicate that the extraocular muscles of cats contain at least five structurally distinguishable types of fibers.Superior rectus muscles were studied by light and electron microscopy, mapping the distribution of each fiber type with its distinctive features. A mixture of 4% paraformaldehyde and 4% glutaraldehyde was perfused through the carotid arteries of anesthetized adult cats and applied locally to exposed superior rectus muscles during the perfusion.


Author(s):  
Werner O. Filtvedt ◽  
Morten Melaaen ◽  
Arve Holt ◽  
Massoud Javidi ◽  
Birger Retterstøl Olaisen

The article presents a novel design for a distribution plate. The solution is suitable for a reactor vessel where a reactant gas needs to be maintained at a different temperature from the reaction chamber in order to avoid unwanted occurrences, such as clogging of the distribution plate. A normal procedure involves cooling of the distribution plate which is reported to either increase heat loss substantially or yield insufficient temperature in parts of the reaction chamber. The problem is especially important for reactors where the difference in reactant inlet temperature and desired reaction temperature is large. The investigated design utilized materials of very different thermal conductivity to only cool specific parts of the distribution arrangement and thereby minimize heat loss. Our system is a distribution plate for use in a fluidized bed reactor for silane pyrolysis. However, the solution is general and may be utilized in many types of vessels and chemical reactors.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mahmoud Diab ◽  
Gloria Faerber ◽  
Ivliane Tsanava ◽  
Martin Breuer ◽  
Mario Walther ◽  
...  

Purpose: Hemodynamic results of stented tissue valves are influenced by both valve design and sizing strategy. The Mitroflow and the Trifecta have an innovative design where the pericardium is wrapped around the stent. The goal of this study was to compare both valves giving special consideration to the suggested sizing strategies. Methods: We obtained pressure gradients from discharge echocardiograms from all patients having received an isolated Trifecta (n=104) or Mitroflow (n=246) between 01/2007 and 01/2014. We compared the results by size label and by the most likely selected size according to the suggested sizing strategy. This is important because the prostheses, despite having a similar design, have different diameters for the same size label and different sizing strategies. Results: The majority of implanted valves were size labels 21 and 23 (82.7% of the Trifecta and 74.8% of the Mitroflow). Mean pressure radients were lowest with Trifecta (Trifecta vs. Mitroflow, label-21: 11.4±4.65 vs 13.6±5.23 mmHg, label-23: 9.23±3.38 vs. 11.8±4.42 mmHg, p< 0.05, and label-25: 11.2±4.97 vs 12.0±4.46 mmHg, n.s.). The sizers for the Trifecta are metric, while those for the Mitroflow are 2-3 mm larger than the corresponding size label. It is therefore likely that for a patient with a 23 mm aortic annulus, a 23 Trifecta but often only a 21 Mitroflow is selected. Thus, comparing the Trifecta to the Mitroflow not by size label but by selected valve (e.g., 23 vs. 21) would therefore only increase the difference. Conclusion: The Trifecta shows a hemodynamic advantage over the Mitroflow which is not likely associated with the applied sizing strategy.


Author(s):  
Niall R. McGlashan ◽  
Peter R. N. Childs ◽  
Andrew L. Heyes

This paper describes an extension of a novel, carbon-burning, fluid phase chemical looping combustion system proposed previously. The system generates both power and H2 with ‘inherent’ carbon capture using chemical looping combustion (CLC) to perform the main energy release from the fuel. A mixed Pb and Zn based oxygen carrier is used, and due to the thermodynamics of the carbothermic reduction of PbO and ZnO respectively, the system generates a flue gas which consists of a mixture of CO2 and CO. By product H2 is generated from this flue gas using the water-gas shift reaction (WGSR). By varying the proportion of Pb to Zn circulating in the chemical loop, the ratio of CO2 to CO can be controlled, which in turn enables the ratio between the amount of H2 produced to the amount of power generated to be adjusted. By this means, the power output from the system can be ‘turned down’ in periods of low electricity demand without requiring plant shutdown. To facilitate the adjustment of the Pb/Zn ratio, use is made of the two metal’s mutual insolubility, as this means they form in to two liquid layers at the base of the reduction reactor. The amount of Pb and Zn rich liquid drawn from the two layers and subsequently circulated around the system is controlled thereby varying the Pb/Zn ratio. To drive the endothermic reduction of ZnO formed in the oxidiser, hot Zn vapour is ‘blown’ into the reducer where it condenses, releasing latent heat. The Zn vapour to produce this ‘blast’ of hot gas is generated in a flash vessel fed with hot liquid metal extracted from the oxidiser. A mass and energy balance has been conducted for a power system, operating on the Pb/Zn cycle. In the analysis, reactions are assumed to reach equilibrium and losses associated with turbomachinery are considered; however, pressure losses in equipment and pipework are assumed to be negligible. The analysis reveals that a power system with a second law efficiency of between 62% and 68% can be constructed with a peak turbine inlet temperature of only ca. 1850 K. The efficiency varies as the ratio between power and H2 production varies, with the lower efficiency occurring at the maximum power output condition.


Author(s):  
Michal Schmid ◽  
Fatih Bozkurt ◽  
Petr Pašcenko ◽  
Pavel Petr&#x9e;ela

Abstract The work demonstrates, via a comprehensive study, the necessity of using a 3D CFD approach for heat exchanger (HTX) modelling within underhood vehicle simulation. The results are presented as the difference between 1D and 3D CFD approaches with a focus on auxiliary fluid (e.g. coolant) temperature prediction as a function of primary fluid (e.g. air) inlet conditions. It has been shown that the 1D approach could significantly underpredict auxiliary fluid inlet temperature due to neglecting the spatial distribution of primary fluid velocity magnitude. The resultant difference in the auxiliary fluid flow HTX inlet temperature is presented and discussed as a function of the Uniformity Index (UI) of the primary fluid flow velocity magnitude. Additionally, the 3D HTX model's importance is demonstrated in an industrial example of full 3D underhood simulation.


Author(s):  
Brice Jardiné ◽  
Olivier Bougeant ◽  
Maxime Pfeiffer

The EPR™ reactor features a fixed incore instrumentation, composed of 72 Self Powered Neutron Detectors (SPND), that provides the online reconstruction of the core maximum Linear Power Density (LPD) and minimum Departure from Nucleate Boiling Ratio (DNBR). The Instrumentation and Control (I&C) systems of the EPR™ reactor use this online reconstruction in surveillance and protection functions. The onsite thresholds of those I&C functions have to take into account all the uncertainties affecting the online reconstruction of core power distribution measured by SPNDs. One of these uncertainties is the so-called Loss Of Representativeness (LOR). This uncertainty is defined as the difference between the LPD (respectively DNBR) physical value and the LPD (respectively DNBR) computed value using SPND signals. The LOR parameter is mostly linked to the difference between the core power distribution at the time where SPNDs are calibrated and the core power distribution at the time where their signals are used. For the DNBR, LOR also takes into account the use of a simplified on-line DNBR calculation algorithm. A statistical approach is used in order to define this uncertainty. The analysis is based on the evaluation of different sets of core power distributions generated thanks to random drawings of the plant state parameters (including power level, core inlet temperature, pressure, control rod insertion and xenon distribution). The sets of core configurations representative of normal plant operation are used to define the surveillance thresholds. The sets representative of accidental transients (for which the LPD and DNBR protections are claimed) are used to define the protection thresholds. The analysis of LOR values provides an envelop probability law covering a minimum of 95% of LOR values. In order to derive the on-site threshold for LPD and DNBR, a Monte Carlo method is used to propagate the LOR probability law and the other uncertainties. Sensitivity calculations have been performed in order to cover a large spectrum of fuel loading patterns and to take into account SPND failures. In conclusion, this approach allows defining an optimized and robust set of thresholds for the on-line surveillance and protection system of EPR™ reactor.


1971 ◽  
Vol 121 (2) ◽  
pp. 169-178 ◽  
Author(s):  
F. J. Ballard

1. Two-day-old rats were exposed at constant temperature to atmospheres containing air and nitrogen with the air content varied in steps from 100 to 0%. By using this system of graded hypoxia a comparison was made between rates of gluconeogenesis from lactate, serine and aspartate in the whole animal and the concentrations of several liver metabolites. 2. Gluconeogenesis, expressed as the percentage incorporation of labelled isotope into glucose plus glycogen, proceeds linearly for 30min when the animals are incubated in a normal air atmosphere, but is completely suppressed if the atmosphere is 100% nitrogen. 3. Preincubation of animals for between 5 and 30min under an atmosphere containing 19% air results in the attainment of a new steady state with respect to gluconeogenesis and hepatic concentrations of ATP, ADP, AMP, lactate, pyruvate, β-hydroxybutyrate and acetoacetate. 4. When lactate (100μmol), aspartate (20μmol) or serine (20μmol) was injected, it was shown that the more severe the hypoxia the greater the depression of gluconeogenesis. Under conditions when gluconeogenesis was markedly inhibited there were no changes in the degree of phosphorylation of hepatic adenine nucleotides, but free [NAD+]/[NADH] ratios fell in both cytosol and mitochondrial compartments of the liver cell. 5. Measurements of total liver NAD+ and NADH showed that the concentrations of these nucleotide coenzymes changed less with anoxia, in comparison with the concentration ratio of free coenzymes. 6. Calculations showed that the difference in NAD+–NADH redox potentials between mitochondrial and cytosol compartments increased with the severity of hypoxia. 7. From the constancy of the concentrations of adenine nucleotides it is concluded that liver of hypoxic rats can conserve ATP by lowering the rate of ATP utilization for gluconeogenesis. Gluconeogenesis may be regulated in turn by the changes in mitochondrial and cytosol redox state.


2017 ◽  
Vol 126 ◽  
pp. 997-1005 ◽  
Author(s):  
Hui Hong ◽  
Jianjian Gao ◽  
Wanjun Qu ◽  
Jie Sun ◽  
Qilan Kang ◽  
...  

2001 ◽  
Vol 41 (7) ◽  
pp. 1065 ◽  
Author(s):  
E. C. Richardson ◽  
R. M. Herd ◽  
V. H. Oddy ◽  
J. M. Thompson ◽  
J. A. Archer ◽  
...  

Yearling Angus steer progeny of parents selected for low residual feed intake (RFI; high efficiency) or high RFI (low efficiency) were evaluated for feed intake, growth and differences in body composition. RFI is the difference between actual feed intake and expected feed intake based on an animal’s size and growth over a test period. Individual intakes of a high grain content ration and growth rates were recorded for 140 days and then the steers were slaughtered for measurement of body composition. All internal organs and non-carcass fat depots were removed, weighed and ground for chemical analysis. Carcasses were kept overnight in the chiller and the left half of every carcass physically dissected into retail cuts, and then into total fat, lean and bone. Carcass fat and lean were then combined and ground for chemical analysis. Steers from low RFI parents ate less (P<0.05) than the steers from high RFI parents, for similar rates of growth. Improvement in RFI was accompanied by small changes in body composition towards greater lean and less fat in the progeny of low RFI parents. Correlations of sire estimated breeding values for RFI with end of test whole body chemical protein, chemical fat and a principal component that condensed information on fat and lean body composition at the end of the test, were statistically significant. These confirmed there was a genetic association between body composition and RFI, with fatness being associated with higher RFI (i.e. lower efficiency). However, the correlations were small and suggested that less than 5% of the variation in sire RFI was explained by variation in body composition of their steer progeny. There was no evidence that a difference in the chemical composition of gain over the test explained the greater intake of metabolisable energy (ME) by the high RFI steers. The results suggest that the difference in ME intake following a single generation of divergent selection for RFI was due to metabolic processes rather than to changes in body composition.


Sign in / Sign up

Export Citation Format

Share Document