scholarly journals Identifying occupant presence in a room based on machine learning techniques by measuring indoor air conditions

2020 ◽  
Vol 172 ◽  
pp. 22005
Author(s):  
Lucia Hanfstaengl ◽  
Michael Parzinger ◽  
Uli Spindler ◽  
Ulrich Wellisch ◽  
Markus Wirnsberger

Knowing about the presence and number of people in a room can be of interest for precise control of heating, ventilation and air conditioning. To determine the number and presence of occupants cost-effectively, it is of interest to use already existing air condition sensors (temperature, humidity, CO2) of the building automation system. Different approaches and methods for determining presence have attracted attention in recent years. We propose an occupancy detection method based on a method of supervised machine learning. In an experiment, measurement data were recorded in a research apartment with controllable boundary conditions. The presence of people was simulated by artificial injection of water vapour, CO2 and heat dissipation. The variation of the number of artificial users, the duration of presence and the supply air volume flow of the ventilation resulted in a total of 720 combinations. By using artificial users, the boundary conditions were accurately defined, and different presence situations could be measured time-effectively. The data is evaluated with a method of supervised machine learning called random forest. The statistical model can determine precisely the number of people in over 93% of the cases in a disjoint test sample. The experiments took part in the Rosenheim Technical University of Applied Sciences laboratory.

2019 ◽  
Vol 20 (4) ◽  
pp. 663-668
Author(s):  
Kausha I. Masani ◽  
Parita Oza ◽  
Smita Agrawal

Machine learning is one of the break-through technologies of the modern digital world. It's applications are found in various research domain such as medicine, image processing, production and manufacturing, aviation and autonomics and many more. To efficiently run a machine, it's maintenance and its monitoring automation system play a key role. The major problem we are targetting is to overcome the lack of an automation system which can give an accuracy rate of the production machine at a given instance of time. Also, the important energy meter parameters required to make power report in an automation system for addressing the production issues, at a given interval of time, were also not recorded. Thus in this paper, we describe how machine learning techniques are used for prediction of the accuracy of running production machine. To address these issues, we have used supervised machine learning technique of Binary decision tree using CART method and for power report, while the data is fetched using RS232 to RS485 convertor via Modbus communication protocol. Using CART we have predicted the machine accuracy at a given time with specific energy meter readings as its input features. This paper discusses the problem definition identified, data analysis of energy meter data and it's fetching and at the end ML techniques applied to predict the accuracy of running production machine. In the end, we prepare various power reports of the different machines from the fetched parameters as well as produce a graphical warning of deteriorating performance of the machine at a given instance of the time.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Helder Sebastião ◽  
Pedro Godinho

AbstractThis study examines the predictability of three major cryptocurrencies—bitcoin, ethereum, and litecoin—and the profitability of trading strategies devised upon machine learning techniques (e.g., linear models, random forests, and support vector machines). The models are validated in a period characterized by unprecedented turmoil and tested in a period of bear markets, allowing the assessment of whether the predictions are good even when the market direction changes between the validation and test periods. The classification and regression methods use attributes from trading and network activity for the period from August 15, 2015 to March 03, 2019, with the test sample beginning on April 13, 2018. For the test period, five out of 18 individual models have success rates of less than 50%. The trading strategies are built on model assembling. The ensemble assuming that five models produce identical signals (Ensemble 5) achieves the best performance for ethereum and litecoin, with annualized Sharpe ratios of 80.17% and 91.35% and annualized returns (after proportional round-trip trading costs of 0.5%) of 9.62% and 5.73%, respectively. These positive results support the claim that machine learning provides robust techniques for exploring the predictability of cryptocurrencies and for devising profitable trading strategies in these markets, even under adverse market conditions.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1044
Author(s):  
Yassine Bouabdallaoui ◽  
Zoubeir Lafhaj ◽  
Pascal Yim ◽  
Laure Ducoulombier ◽  
Belkacem Bennadji

The operation and maintenance of buildings has seen several advances in recent years. Multiple information and communication technology (ICT) solutions have been introduced to better manage building maintenance. However, maintenance practices in buildings remain less efficient and lead to significant energy waste. In this paper, a predictive maintenance framework based on machine learning techniques is proposed. This framework aims to provide guidelines to implement predictive maintenance for building installations. The framework is organised into five steps: data collection, data processing, model development, fault notification and model improvement. A sport facility was selected as a case study in this work to demonstrate the framework. Data were collected from different heating ventilation and air conditioning (HVAC) installations using Internet of Things (IoT) devices and a building automation system (BAS). Then, a deep learning model was used to predict failures. The case study showed the potential of this framework to predict failures. However, multiple obstacles and barriers were observed related to data availability and feedback collection. The overall results of this paper can help to provide guidelines for scientists and practitioners to implement predictive maintenance approaches in buildings.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document