scholarly journals Technological Deconstruction and Reorganization Process of Industrial Design Driven Product Innovation

2020 ◽  
Vol 179 ◽  
pp. 02099
Author(s):  
Wu Qiong ◽  
Yin You-tao

The work aims at discussing the essence of technology deconstruction and reorganization, and establishing the core value of technical decision-making in product micro-system design, In view of the current reality of neglecting product technology innovation. It clarifies the content of product technology and explores the ways and methods of product technology deconstruction and restructuring in the industrial design process. Industrial design is integration and inclusion, parallel design and collaborative design is the overall trend of its development, product technology design and modeling, man-machine and other design will eventually become unified. The innovation of working principle is the process of replacing the basic elements and modules or optimizing the state of material, information and energy transfer; product structure optimization is the process of mathematically finding the minimum design variables that meet the design requirements; the innovation of modeling material solutions is to solve the decision-making problem of the target multi-scheme; the processing technology improvement is to solve the process route optimization problem under multi-constraint conditions.

Author(s):  
Zhiqiang Chen ◽  
Zahed Siddique

This paper presents a Petri-net process model that captures the dependency relationships of design decision making and information exchanges among multiple design problems in a distributed environment. The Model of Distributed Design (MDD) allows quantitative representation of a collaborative design process in which designers from multiple disciplines can effectively work together. The MDD is developed based on the Petri-net graph, which allows various performance analysis to be performed to evaluate and improve a collaborative design process. In this paper, the compromise Decision Support Problem (c-DSP) formulation is used to describe the design problems and the Petri-net is utilized to explicitly describe the propagation of shared design variables and the interactions. The applicability of the model is demonstrated through an example design problem that requires collaboration among four design disciplines. The design processes based on the example are modeled and then analyzed to obtain process features and performance evaluations. Based on the analysis results, an improved design process is given which shortens the design time.


Author(s):  
S. Raza Wasi ◽  
J. Darren Bender

An interesting, potentially useful, and fully replicable application of a spatially enabled decision model is presented for pipeline route optimization. This paper models the pipeline route optimization problem as a function of engineering and environmental design criteria. The engineering requirements mostly deal with capital, operational and maintenance costs, whereas environmental considerations ensure preservation of nature, natural resources and social integration. Typically, pipelines are routed in straight lines, to the extent possible, to minimize the capital construction costs. In contrast, longer pipelines and relatively higher costs may occur when environmental and social considerations are part of the design criteria. Similarly, much longer pipelines are less attractive in terms of capital costs and the environmental hazard associated with longer construction area. The pipeline route optimization problem is potentially a complex decision that is most often undertaken in an unstructured, qualitative fashion based on human experience and judgement. However, quantitative methods such as spatial analytical techniques, particularly the least-cost path algorithms, have greatly facilitated automation of the pipeline routing process. In the past several interesting studies have been conducted using quantitative spatial analytical tools for finding the best pipeline route or using non-spatial decision making tools to evaluate several alternates derived through conventional route reconnaissance methods. Most of these studies (that the authors are familiar with) have concentrated on integrating multiple sources of spatial data and performing quantitative least-cost path analysis or have attempted to make use of non-spatial decision making tools to select the best route. In this paper, the authors present a new framework that incorporates quantitative spatial analytical tools with an Analytical Hierarchical Process (AHP) model to provide a loosely integrated but efficient spatial Decision Support System (DSS). Specifically, the goal is to introduce a fully replicable spatial DSS that processes both quantitative and qualitative information, balances between lowest-cost and lowest-impact routes. The model presented in this paper is implemented in a four step process: first, integration of multiple source data that provide basis for engineering and environmental design criteria; second, creation of several alternate routes; third, building a comprehensive decision matrix using spatial analysis techniques; and fourth, testing the alternative and opinions of the stakeholder groups on imperatives of AHP model to simplify the route optimization decision. The final output of the model is then used to carry out sensitivity analysis, quantify the risk, generate “several what and if scenarios” and test stability of the route optimization decision.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2018 ◽  
Vol 99 (1) ◽  
pp. 121-136 ◽  
Author(s):  
Sue Ellen Haupt ◽  
Branko Kosović ◽  
Tara Jensen ◽  
Jeffrey K. Lazo ◽  
Jared A. Lee ◽  
...  

Abstract As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from the public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers. The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, which forms the basis of the system beyond about 6 h. For short-range (0–6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short- to midterm irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. This paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.


Author(s):  
R Fışkın ◽  
E Nasibov ◽  
M O Yardımcı

Most of the accidents are caused by human error at sea so, decision making process made by navigators should be more computerised and automated. The supported decision making can be a step forward to decrease the risk of collision. This paper, in this respect, aims to present a deterministic approach to support optimum collision avoidance trajectory. This approach involves a collision avoidance course alteration. A web-based application coded with "JavaScript" programming language on the "Processing" software platform which allows the own ship to change her course in a deterministic manner to avoid collision optimally has been introduced. Algorithm structure of the method has been formulated and organized according to the International Regulation for Preventing Collision at Sea (COLREGs). The experimental tests results have revealed that the system is practicable and feasible and considerably outperforms heuristic-based method. It is thought that the developed method can be applied in an intelligent avoidance system on board and provides contribution to ship collision avoidance process, automation of ship motion control and ship traffic engineering.


Author(s):  
Shan Yu ◽  
Zeshui Xu

Integration plays a very important role in the fusion methods. In this paper, we put forward the subtraction and division definite integrals based on the fuzzy measure and the admissible order for aggregating not only discrete but also continuous correlative intuitionistic fuzzy information. These definite integrals are implemented by constructing the integrands and the integral limits respectively, and based on which an approach to multi-criteria decision making with correlative intuitionistic fuzzy information is developed. Finally, an illustrative example involving technology improvement of Midwest American Manufacturing Corp is employed to verify the practicality and effectiveness of our approach.


Author(s):  
Eiji Adachi

Abstract Actual product designs aim to fulfill all product requirements of market needs and wants, which are technical or non-technical, logical or illogical, objective or subjective, and quantitative or qualitative. The actual product designs are objective-aiming designs and can be supposed to be multi-objective satisfactory designs with heterogeneous objective functions and dimensional design variables. To realize computer-aided product designs which can obtain rational and satisfactory solutions, we classify the objective functions and contrive methods to deal with non-theoretical, non-technical, subjective, or illogical objective functions as well. This paper shows all of our methods, including an expression of heterogeneous objective functions which consists of objective and evaluated values, a satisfactory design method by simultaneous equations which searches solutions sequentially, identification methods of non-theoretical or non-technical objective functions and sensitivity coefficients for the simultaneous equations, a decision-making method of promising solutions to fulfill product requirements, and also numerical applications of these methods to actual product designs.


Sign in / Sign up

Export Citation Format

Share Document