scholarly journals Performance evaluation of nano-silica concrete

2020 ◽  
Vol 184 ◽  
pp. 01076
Author(s):  
Kakara S J Kumar ◽  
M V Seshagiri Rao ◽  
V Srinivasa Reddy ◽  
S Shrihari

In this paper, the study of the influence of nano-silica (nano-SiO2) on the properties of the interface between CSH gel and cement particles and its effect on nano-mechanical properties of the products at the interface zone was examined. In this paper M50 grade SCC mixes were developed using 5% micro-silica and various percentages of 0.5%, 1.0% and 1.5% nano-SiO2. For 1.0% nano-SiO2 addition to M50 grade SCC mix, the compressive strength is maximum. Similarly concrete quality using non-destructive techniques, water absorbtion capacity and porosity are also assessed.

2010 ◽  
Vol 638-642 ◽  
pp. 748-753
Author(s):  
Abdelilah Benmarouane ◽  
Helene Citterio-Bigot ◽  
Guillaume Geandier ◽  
T. Hansen ◽  
Pierre Millet ◽  
...  

The quantitative evaluation of the preferential orientation of crystallites by the synchrotron and neutron diffraction techniques during regeneration at the interface with implant gives a good prediction of the mechanical properties of the bone. During the process of bone healing after implantation, the speed and quality of regeneration is affected by the nature of the implant surface. Titanium alloy (Ti-Al-4V) is currently coating with the hydroxyapatite (HAp), Ca10(PO4)6 (OH)2, in order to obtain a stable and functional direct connection between bone and implant. At the interface implant-bone, the new bone reconstituted after implantation must have the same mechanical properties of bone in order to accept the implant. Therefore, it is necessary to study by means of two non destructive techniques: neutron diffraction and synchrotron radiation, the crystal growth and texture of this new bone crystals reconstituted at the interface.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1331
Author(s):  
Xinjiang Song ◽  
Haibo Xu ◽  
Deqin Zhou ◽  
Kai Yao ◽  
Feifei Tao ◽  
...  

In order to explore the effect of composite materials on the mechanical properties of coastal cement soil, cement soil samples with different iron tailings and nano silica contents were prepared, and unconfined compression and scanning electron microscope tests were carried out. The results show that: (1) The compressive strength of cement soil containing a small amount of iron tailings is improved, and the optimum content of iron tailings is 20%. (2) Nano silica can significantly improve the mechanical properties of iron tailings and cement soil (TCS). When the content of nano silica is 0.5%, 1.5%, and 2.5%, the unconfined compressive strength of nano silica- and iron tailings-modified cement soil (STCS) is 24%, 137%, and 323% higher than TCS, respectively. (3) Nano silica can promote the hydration reaction of cement and promote the cement hydration products to adhere to clay particles to form a relatively stable structure. At the same time, nano silica can fill the pores in TCS and improve the compactness of STCS.


Author(s):  
Myriam Marie Delcasse ◽  
Nirmith .S. Kumar,Ashwith .S. ◽  
Nikethan .M.S. ◽  
Sunil Kumar .S. Nayak ◽  

2021 ◽  
Vol 72 (1) ◽  
pp. 76-83
Author(s):  
Lam Le Hong ◽  
Lam Dao Duy ◽  
Huu Pham Duy

The demand for High Performance Concrete (HPC) is steadily increasing with massive developments. Conventionally, it is possible to use industrial products such as silica fume (SF), fly ash, as supplementary cementitious materials (SCM), to enhance the attributes of HPC. In recent years, nano-silica (NS) is used as an additive in added mainly to fill up the deviation arises with the addition of SF for HPC. This study aims to optimize the proportion of NS (produced in Vietnam) in the mixture used for fabricating 70 MPa high-performance concrete. SiO2 powder with particle size from 10 to 15 nm were used for mixing. A series of compressive strength test of HPC with nano-SiO2 varied from 0 to 2.8 percent of total of all binders (0%, 1.2%, 2%, 2.8%), and the fixed percentage of silica fume at 8% were proposed. Results show compressive strength increases with the increase of nano-SiO2, but this increase stops after reaching 2%. And at day 28 of the curing period, only concrete mixture containing of 8% silica fume and 2% nano-SiO2, had the highest compressive strength.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2291 ◽  
Author(s):  
Nasir Shafiq ◽  
Rabinder Kumar ◽  
Muhammad Zahid ◽  
Rana Faisal Tufail

This paper discussed the effects of modified metakaolin (MK) with nano-silica (NS) on the mechanical properties and durability of concrete. In the first phase, trial mixes of concrete were prepared for achieving the desired value of the 28 days compressive strength, and the charge passed in rapid chloride permeability test (RCPT). In the second phase, statistical analysis was performed on the experimental results using the response surface method (RSM). The RSM was applied for optimizing the mix proportions for the required performance by exploiting the relationship between the mix characteristics and the corresponding test results. A blend of 10% MK + 1% NS as part of cement replacement exhibited the highest mechanical properties and durability characteristics of concrete; concrete mix showed that the 28-days compressive strength (CS) was 103 MPa, which was 15% greater than the CS of the control mix without MK or NS. The same mix showed more than 40% higher flexural and split-tensile strength than the control mix; also it resulted in a reduction of 73% in the rapid chloride permeability value. ANOVA technique was used for optimizing the nano-silica and metakaolin content for achieving maximum compressive strength and minimum RCPT value. Statistical analysis using ANOVA technique showed that the maximum compressive strength and lowest RCPT value could be achieved with a blend of 10% MK and 1.55% NS.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-54
Author(s):  
Neti Rahmawati ◽  
Irwan Lakawa ◽  
Sulaiman Sulaiman

Concrete is one of the most widely used building materials today interms of physical construction. Concrete is made from a mixture offine, coarse aggregate, cement, and water with a certain ratio, aswell as materials that are usually added to the concrete mixtureduring or during mixing, to changing the properties of concrete tomake it more suitable in certain jobs and more economical, can alsobe added with certain other mixed materials as needed if deemednecessary. Seashells can be used to mix concrete. This study aims todetermine whether the addition of shells aggregate shells in aconcrete mixture can affect the mechanical properties of concrete.The specimens used are in the form of cubes with a size of 15cm x 15cm x 15 cm, consisting of additional concrete coarse and fineaggregate with shell substitution percentage of 0%, 15%, 20% with atotal sample of 45, with the planned concrete quality of K225. Theuse of sea shells in increasing the compressive strength of concrete isbetter used as fine aggregate than coarse aggregate. The use of seashells as a substitute for fine aggregates achieves maximum resultsat 20% composition.


2017 ◽  
Vol 12 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Galyna Kotsay

Abstract Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document