scholarly journals High Volume Fly Ash Self Compacting Concrete with Lime and Silica Fume as Additives

2020 ◽  
Vol 184 ◽  
pp. 01109
Author(s):  
C Chandana Priya ◽  
M V Seshagiri Rao ◽  
V Srinivasa Reddy ◽  
S Shrihari

SCC is expensive when compared with normal conventional concrete. Hence, it is desired to produce low cost SCC by replacing cement with higher percentages of fly ash, which is a no cost material and available in abundance. At the same time to achieve higher grade HVFASCC, micro silica which is otherwise condensed silica fume can also be used along with fly ash to enhance the strength properties of HVFASCC. By replacing fly ash in high volumes in the mix, high amount of pozzolanic material becomes available, majorly reactive silica, for which more calcium hydroxide is necessary for further pozzolanic reaction. As we are reducing cement quantity, the amount of calcium hydroxide available is reduced thus demanding external addition of hydrated lime which can be supplied as additive to cater to the need of calcium hydroxide required for reactive silica in fly ash.The present investigation aims to achieve strength for high volume fly ash self-compacting concrete. The replacement of cement with fly ash is made in 45%, 50%, 55%, 60%, 65% and 70% with 20% hydrated lime and 10% silica fume in one trial. In another trial, 30% hydrated lime and 10% silica fume is added with replacement of fly ash to cement varying in same percentages. The design mix is tested for workability and flowability and cubes are casted for compression strength test and tested at 28 day,, 56 day, and 90 day,.

2020 ◽  
Vol 27 ◽  
pp. 100985 ◽  
Author(s):  
Marcos A.S. Anjos ◽  
Aires Camões ◽  
Pedro Campos ◽  
Givanildo A. Azeredo ◽  
Ruan L.S. Ferreira

2021 ◽  
Vol 13 (10) ◽  
pp. 5571
Author(s):  
Wesam Salah Alaloul ◽  
Muhammad Ali Musarat ◽  
Sani Haruna ◽  
Kevin Law ◽  
Bassam A. Tayeh ◽  
...  

The existing form of self-compacting concrete (SCC) comprises of a large amount of powdered and fine materials. In this study, a part of the cementitious material was replaced with constant high-volume fly ash, and a portion of fine aggregates was substituted by crumb rubber (CR). Besides that, silica fume (SF) was added, with the hope that by implementing a new type of nanomaterial, the loss in mechanical strength due to previous modifications such as rubberization and replacement will be prevented. Two variables were found to influence the constituent/component in the mix design: SF and CR. The proportion of SF varies from 0% to 10%, while that of CR from 0% to 30% by volume of the total river sand, where 55% of cement was replaced by the fly ash. A total of 13 rubberized SCC samples with CR and SF as controlling variables were made, and their design mix was produced by a Design of Experiment (DOE) under the Response Surface Methodology (RSM). The results reveal a slight increase in the mechanical properties with the addition of SF. The theoretical mathematical models and equation for each different mechanical strength were also developed after incorporating the experimental results into the software.


2021 ◽  
pp. 1-29
Author(s):  
Himabindu Myadaraboina ◽  
David Law ◽  
Indubhushan Patanikuni

The incorporation of high volume fly ash, up to 80%, in concrete without compromising the mechanical and durability properties is potentially very advantageous to the concrete industry in enabling the delivery of economic, social and environmental benefits. To assess this, two high volume fly ash mix designs incorporating 80% class F ultra-fine fly ash, known as microash and hydrated lime, with 10% silica fume and 0 % silica fume have been investigated. Properties investigated are compressive strength, carbonation, chloride ion penetration, water absorption and permeability. The specimens were cured for a maximum period of 90 days to optimize completion of the hydration reaction. The results show that the concrete manufactured with 80% microash exhibited compressive strength in excess of 40 MPa at 28 days and over 70 MPa at 90 days. The material also displayed excellent durability properties compared to the normal Portland cement concrete and other high volume fly ash concretes. The addition of silica fume improved the strength and durability properties of the material.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Yu Zheng ◽  
Nuan Zhou ◽  
Lingzhu Zhou ◽  
Hexin Zhang ◽  
Haotian Li ◽  
...  

2018 ◽  
Vol 195 ◽  
pp. 02023 ◽  
Author(s):  
Stefanus Kristiawan ◽  
Sunarmasto ◽  
Agus S Budi ◽  
Desi C Kurniawati

Utilization of High-Volume Fly Ash-Self Compacting Concrete (HVFA-SCC) as a reinforced concrete structural element requires a rational analysis to accommodate the mechanical characteristics of HVFASCC. This study aims to investigate and analyze the mechanical characteristics of HVFA-SCC by examining the experimentally obtained complete stress-strain behavior of this concrete. The results indicate that the compression stress-strain curve of HVFA-SCC is diverse to that of normal concrete (NC) in which the average area under the curve represents 64% to that of NC. Consequently, the equivalent rectangular compression stress for calculating the nominal flexural strength of reinforced HVFASCC section should be modified by a factor of 0.64. Based on this theoretical analysis, a close agreement exists between the predicted nominal flexural strength and the experimental result.


2020 ◽  
Vol 8 (4) ◽  
pp. 393
Author(s):  
Muhammad Tsaqif Muhadzib

<p><em>Self Compacting Concrete</em> (SCC) merupakan inovasi dalam bidang konstruksi dengan berbagai macam kelebihan, namun terdapat kekurangan yaitu SCC memerlukan proporsi semen yang lebih banyak sehingga tidak ramah lingkungan. Material yang dapat menggantikan semen dengan karakteristik yang sama adalah <em>fly ash</em>. <em>Fly ash</em> merupakan sisa pembakaran batu bara yang mengandung silica atau silica alumina dan bersifat pozzolan. Penggunaan <em>fly ash </em>sebagai campuran beton dapat digunakan hingga mencapai &gt;50% dari total semen yang dibutuhkan dan dinamakan <em>High Volume Fly Ash Conccrete</em> (HVFAC). Penelitian ini mengkaji kapasitas geser balok bertulang HVFA-SCC 60% dan balok beton normal. Benda uji yang digunakan dalam penelitian ini memiliki dimensi 10 cm x 18,5 cm x 130 cm dengan 2 titik pembebanan dengan jarak antar beban sebesar 20 cm. Berdasarkan hasil penelitian kapasitas geser balok bertulang HVFA-SCC 60% lebih kecil dibandingkan kapasitas geser balok beton normal yang diuji pada umur 28 hari.</p>


Sign in / Sign up

Export Citation Format

Share Document