scholarly journals Research on Comprehensive Processing Technology of Gannan Navel Orange

2020 ◽  
Vol 185 ◽  
pp. 04063
Author(s):  
Liming Ou ◽  
Feipeng Lin

Gannan navel orange has been well known since the 1970s. With the development of the country and society, navel orange has formed an overall system, including planting, production, storage, preservation, processing and other work processes. The technology of food processing with raw materials is becoming more and more extensive.

Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


2013 ◽  
Vol 116 (1) ◽  
pp. 125-141 ◽  
Author(s):  
Manoj Dora ◽  
Dirk Van Goubergen ◽  
Maneesh Kumar ◽  
Adrienn Molnar ◽  
Xavier Gellynck

Purpose – Recent literature emphasizes the application of lean manufacturing practices to food processing industries in order to improve operational efficiency and productivity. Only a very limited number of studies have focused on the implementation of lean manufacturing practices within small and medium-sized enterprises (SMEs) operating in the food sector. The majority of these studies used the case study method and concentrated on individual lean manufacturing techniques geared towards resolving efficiency issues. This paper aims to analyze the status of the lean manufacturing practices and their benefits and barriers among European food processing SMEs. Design/methodology/approach – A structured questionnaire was developed to collect data. A total of 35 SMEs' representatives, mostly CEOs and operations managers, participated in the survey. The study investigated the role of two control variables in lean implementation: size of the company and country of origin. Findings – The findings show that lean manufacturing practice deployment in food processing SMEs is generally low and still evolving. However, some lean manufacturing practices are more prevalent than others; e.g. flow, pull and statistical process control are not widely used by the food processing SMEs, whereas total productive maintenance, employee involvement, and customer association are more widespread. The key barriers encountered by food SMEs in the implementation of lean manufacturing practices result from the special characteristics of the food sector, such as highly perishable products, complicated processing, extremely variable raw materials, recipes and unpredictable demand. In addition, lack of knowledge and resources makes it difficult for food processing SMEs to embark on the lean journey. Originality/value – The gap in the literature regarding the application of lean manufacturing in the food sector is identified and addressed in this study. The originality of this paper lies in analyzing the current status of the use of lean manufacturing practices among food SMEs in Europe and identifying potential barriers.


2017 ◽  
Vol 2 (1) ◽  
pp. 89-100
Author(s):  
Rudiati Evi Masithoh ◽  
Heni Kusumawati

Community may be involved in food security program by utilizing local based food materials in their surrounding areas. Potency of local food in Indonesia can be used as an alternative for the staple food. Te huge number of housewives in Yogyakarta can support the family economy or reduce the household budget through the use of local food sources. Tis community service activities aiemed at providing an understanding of processing technology of non-rice and non wheat food resources to be utilized to achieve food security and improve household economy. Outcomes of this activity are non-rice food products as carbohydrates source and non - grain food diversifcation, an improved understanding of food processing technology, as well as increased understanding of marketing and entrepreneurship.


2018 ◽  
Vol 38 (2) ◽  
pp. 314-332 ◽  
Author(s):  
Hendryk Dittfeld ◽  
Kirstin Scholten ◽  
Dirk Pieter Van Donk

Purpose While systems theory explicitly considers interactions as part of a system’s complexity, supply chain complexity (SCC) is mostly conceptualized and measured as a linear summation of several aspects. The purpose of this paper is to challenge the general understanding by explicitly investigating interactions between and across different types (detail and dynamic) and levels (plant, supply chain, environment) of SCC. Design/methodology/approach An exploratory multiple case study methodology is adopted drawing on in-depth semi-structured interviews with respondents from eight manufacturing plants in the food processing industry. Findings On the one hand, it is found that different types add and increase overall SCC. On the other hand, the study also shows the opposite: interactions between detail and dynamic complexity can reduce the overall SCC experienced. Additionally, the findings highlight the specific food processing characteristics such as the variability of quality and quantity of raw materials that underlie interactions between types and levels of SCC. Originality/value This study adds to theory by empirically showing that interactions across and between types and levels do not automatically increase, but might also reduce SCC. As such, the findings contribute new detail to the concept of SCC: aspects of complexity do not necessarily add up linearly. Additionally, this study is one of the first to demonstrate how specific contextual aspects from the food processing industry relate to SCC.


2015 ◽  
pp. 575-592 ◽  
Author(s):  
Gintautas Saulis ◽  
Raminta Rodaitė-Riševičienė ◽  
Viktorija Skaidrutė Dainauskaitė ◽  
Rita Saulė

2019 ◽  
Vol 964 ◽  
pp. 185-192
Author(s):  
Sungging Pintowantoro ◽  
Mas Irfan P. Hidayat ◽  
Fakhreza Abdul ◽  
Hamzah Syaifullah

The abundant of nickel ore resources in Indonesia and the regulations of Law of Coals and Minerals No. 4 year 2009 cause the development of nickel ore processing technology. One of the proven nickel ore processing technology is Mini Blast Furnace (MBF). When, the raw materials were fed to the MBF, there is a charging system to ensure good distribution of raw materials in MBF. The double bell charging system has an important role on the distribution of burden material in MBF. By optimizing the distribution and layers of the material burden, it will increase the stability and efficiency of the MBF process. Therefore, this study focused on analyzing the effect of large bell angle on the distribution of burden material in MBF using discrete element method. After analyzed, large bell angle differences produce different burden material distribution. For particle distribution, particles of small density (coal and dolomitee) tend to be concentrated in the center zone and particles of large density (ore) tend to be concentrated in the intermediate and peripheral zone. The larger angle of the large bell will increase particle falling velocity and the kinetic energy of the burden material. The most stable layer in MBF was obtained when using 65o bell angle. The MBF with 65o large bell angle is the best bell angle for MBF with capacity of 250 ton/day due to the greatest possibility of central working furnace operation.


Sign in / Sign up

Export Citation Format

Share Document