scholarly journals Field Evaluation of Hydrologic and Water Quality Benefits of Perforated Paving Block Structure (P2BS)

2020 ◽  
Vol 202 ◽  
pp. 05010
Author(s):  
Suripin S ◽  
Sachro Sri Sangkawati ◽  
Atmojo Pranoto Samto ◽  
Edhisono Sutarto ◽  
Kurniani Dwi ◽  
...  

This paper discusses the use of perforated paving block structure (P2BS) as a pavement structure on the parking lot. Model of P2BS was developed in the field to analyze its capacity in reducing runoff and improving surface runoff quality. The depth and intensity of the rainfall is regulated with a rainfall simulator. The rate of native soil infiltration (natural) was tested with ring infiltrometer. The model's ability to reduce peak discharge and runoff volume, delay time, as well as improve quality of surface runoff was observed. The results show that proposed P2BS are able to significantly reduce runoff volume and peak discharge, delay start runoff and peak discharge time. It is also able to remove pollutants, especially TSS.

2020 ◽  
Vol 3 (2) ◽  
pp. 191
Author(s):  
Vella Maulina Kris Putri ◽  
Agata Iwan Candra ◽  
Ahmad Ridwan

The soil has an important role in construction, namely as the loading of soil on clay. It is necessary to improve the nature of the shrinkage. The authors conducted the study to increase the strength of clay by adding wood ashes and bamboo ashes. Wood ash and bamboo ash have pozzolan properties expected to add power to clay when weighted, would drop significantly.  Material compares in this study using a mix of wood ash and bamboo ash with a variation of 0%, 4%, 8%, and 12%. Meanwhile, the clay soil is taken directly from the ravaged area, from bulging villages, from the grid district. The results showed that the soil is categorized as montmorillonite soil with properties that can damage light structures and road surface runoff. After adding wood and bamboo ash, it showed optimum results of 12% of the dry fixed test items showing a liquid limit’s value at 41,00%, plastic limit at 28,43%, and the net value of plastic limit at 12,57%. When testing for solidification using native soil at a dry volume of 7,91, gr/cm rainfall can increase by 10,42 gr/cm additives after adding 12% of wood ash and bamboo ash.Tanah memiliki peran penting dalam konstruksi yaitu sebagai pembebanan tanah pada tanah liat. Perlu untuk memperbaiki sifat penyusutan. Penulis melakukan penelitian untuk meningkatkan kekuatan tanah liat dengan cara menambahkan abu kayu dan abu bambu. Abu kayu dan abu bambu memiliki sifat pozzolan yang diharapkan dapat menambah kekuatan pada tanah liat saat tertimbang, akan turun secara signifikan. Perbandingan material dalam penelitian ini menggunakan campuran abu kayu dan abu bambu dengan variasi 0%, 4%, 8%, dan 12%. Sementara itu, tanah lempung diambil langsung dari area yang rusak, dari desa-desa yang menggembung, dari grid distrik. Hasil penelitian menunjukkan bahwa tanah tersebut dikategorikan sebagai tanah montmorillonite dengan sifat yang dapat merusak struktur ringan dan aliran permukaan jalan. Setelah dilakukan penambahan abu kayu dan bambu didapatkan hasil optimum dari 12% benda uji tetap kering yang menunjukkan nilai batas cair 41,00%, batas plastis  28,43%,   dan   nilai   bersih   batas  plastis  12,57%.   Pada pengujian solidifikasi menggunakan tanah asli pada volume kering 7,91 gr / cm curah hujan dapat meningkat sebesar 10,42 gr / cm aditif setelah penambahan 12% abu kayu dan abu bambu.


Author(s):  
Rizal Kurniansah

This study aims to determine the key components of tourism destinations Lakey-Hu’u, Sumbawa Island.It also examines the perceptions and expectations of tourists to the quality of the components, and describes the improvised program of the Lakey- Hu’u components.Data were collected through observation, interviews, and questionnaires which then analysed using theory component of the tourism product and the theory of perception.The results showed that the decisive component of tourism destinations Lakey-Hu’u include attractions, amenities, accessibility, ancillary, and community involvement.Based on the analysis of the Likert scale rating on the perceptions and expectations of the quality of tourism destinations Lakey-Hu’u component, the average rating was already good, improvisation program components that get listed on the main handling quadrant I, among others: a parking lot, a lifeguard, ding repair, the condition of transport modes to the location and completeness of the information through the Internet, travel agents, tour brochures or information.


The quality of surface water remains an important issue today. This is particularly acute for water bodies located in the urban-basin geosystems. Purpose. To estimate pressure of atmospheric precipitation within the urban landscape basin geosystem on the river water (by example of the Kharkiv river). Methods. Field landscaping, ecological, landscape-geochemical; analytical; system analysis; chemical analytical; statistical Results. An assessment of the state of surface waters under the impact from the surface runoff of atmospheric origin during 2014-2016, and partly from 2017-2019, formed under the influence of the transport (partly residential) subsystem of the urban area and surface waters in Kharkiv. On the salt content, the characteristic of water quality is "moderately polluted" (1,6); on the tropho-saprobiological indicators, the quality of water is characterized as "polluted" (from 3.1 to 2.75 along the river). It is in this context the impact of waters, which is formed in the conditions of the urban environment for the quality of natural waters, is well demonstrated. The presence of high values of pollutants and natural factors. The assessment of the quality of water on the content of specific indicators is "moderately polluted" (from 2.28 to 1.85). Conclusions. The water of the Kharkiv region, which has a strong influence from the urban environment, has a grade III quality; the water is "moderately polluted". Environmental assessment indicates the impact of surface runoff already on the middle part of the river, which increases in accordance with the conditions of the operation of urban landscapes and anthropogenic (transport) load.


2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.


2019 ◽  
Author(s):  
Yangzi Qiu ◽  
Abdellah Ichiba ◽  
Igor Da Silva Rocha Paz ◽  
Feihu Chen ◽  
Pierre-Antoine Versini ◽  
...  

Abstract. Currently, Low Impact Development (LID) and Nature-Based Solutions (NBS) are widely accepted as sustainable approaches for urban stormwater management. However, their complex impacts depend on the urban environmental context as well as the small-scale heterogeneity, which need to be assessed by using the fully distributed hydrological model and high resolution data at small scale. In this paper, a case study (Guyancourt), located in the South-West of Paris, was explored. Three sets of high resolution X-band radar data were applied to investigate the impact of variability of spatial distribution of rainfall. High resolution geographic information has been processed to identify the suitable areas that can be covered by the LID/NBS practices, porous pavement, green roof, and rain garden. These individual practices, as well as the combination of the three, were implemented as scenarios in a fully distributed and physically-based Multi-Hydro model, which takes into consideration the variability of the whole catchment at 10 m scale. The performance of LID/NBS scenarios are analysed with two indicators (total runoff volume and peak discharge reduction), with regards to the hydrological response of the original catchment (baseline scenario). Results are analysed with considering the coupling effect of the variability of spatial distributions of rainfall and land uses. The performance of rain garden scenario is better than scenario of green roof and porous pavement. The most efficient scenario is the combination of the three practices that can reduce total runoff volume up to 51 % and peak discharge up to 53 % in the whole catchment, and the maximum values of the two indictors in three sub-catchments reach to 60 % and 61 % respectively. The results give credence that Multi-Hydro is a promising model for evaluating and quantifying the spatial variability of hydrological responses of LID/NBS practices, because of considering the heterogeneity of spatial distributions of precipitation and land uses. Potentially, it can guide the decision-making process of the design of LID/NBS practices in urban planning.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Cheng Cheng ◽  
Peng Qi

Pricing is a common measure for parking demand management that has been implemented worldwide. However, the impact of parking price on a parking lot’s quality of service is seldom discussed. This study investigated the impacts of a ladder daily maximum fee charging strategy on the quality of service of the Hongqiao International Airport parking lot based on automatic transaction data before and after the strategy was implemented. An evaluation framework considering managers’ and users’ perspectives was designed. The estimation results show that the new price regulation method largely discouraged long-term parking demand and improved the availability of airport parking facilities, especially during long holidays. As a consequence, throughput and income largely increased in the airport, and there were extra time costs during vehicle departures. The price elasticity of parkers with different parking durations was further estimated. The results showed that price sensitivity is relatively inelastic but varies based on parking duration.


Author(s):  
Gabriel Markovič ◽  
Martina Zeleňáková ◽  
Zuzana Vranayová ◽  
Daniela Kaposztásová
Keyword(s):  

2011 ◽  
Vol 255-260 ◽  
pp. 2718-2721
Author(s):  
Ru Zhang ◽  
Anthony N. Tafuri ◽  
Richard Field ◽  
Shaw L. Yu ◽  
Wen Bin Zhou ◽  
...  

Xikeng Reservoir is one of the major water supply reservoirs in Shenzhen. The water quality of Xikeng Reservoir has been poor, with much of the pollution coming from nonpoint sources. An innovative low impact development type of BMP called the BioBox was used at the Administration Building parking lot location, as a research site and demonstration project to show how small alterations to parking lot designs can dramatically decrease pollutant loads. Manual samples were collected during storm events and analyzed for total suspended solids (TSS); five-day biochemical oxygen demand (BOD5); ammonia nitrogen (NH3-N), and total phosphorus (TP). In summary, the ranges of removal rates of the BioBox are: TSS 70% - 90%; BOD5 20% - 50%, and ammonia and phosphorus 30% - 70%. The BioBox system effectively reduced the concentrations of pollutants in the parking lot runoff.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 985-995 ◽  
Author(s):  
Q. Dai ◽  
Z. Liu ◽  
H. Shao ◽  
Z. Yang

Abstract. The influence on soil erosion by different bedrock bareness ratios, different rainfall intensities, different underground pore fissure degrees and rainfall duration are researched through manual simulation of microrelief characteristics of karst bare slopes and underground karst crack construction in combination with artificial simulation of rainfall experiment. The results show that firstly, when the rainfall intensity is small (30 and 50 mm h−1), no bottom load loss is produced on the surface, and surface runoff, underground runoff and sediment production are increased with the increasing of rainfall intensity. Secondly, surface runoff and sediment production reduced with increased underground pore fissure degree, while underground runoff and sediment production increased. Thirdly, raindrops hit the surface, forming a crust with rainfall duration. The formation of crusts increases surface runoff erosion and reduces soil infiltration rate. This formation also increases surface-runoff-erosion-damaged crust and increased soil seepage rate. Raindrops continued to hit the surface, leading the formation of crust. Soil permeability showed volatility which was from reduction to increases, reduction, and so on. Surface and subsurface runoff were volatile with rainfall duration. Fourthly, when rock bareness ratio is 50 % and rainfall intensities are 30 and 50 mm h−1, runoff is not produced on the surface, and the slope runoff and sediment production present a fluctuating change with increased rock bareness ratio. Fifthly, the correlation degree between the slope runoff and sediment production and all factors are as follows: rainfall intensity-rainfall duration-underground pore fissure degree–bedrock bareness ratio.


Sign in / Sign up

Export Citation Format

Share Document