scholarly journals Hydrolysis of Cellulose from Oil Palm Empty Fruit Bunch using Aspergillus niger

2021 ◽  
Vol 226 ◽  
pp. 00042
Author(s):  
Sri Sugiwati ◽  
Suaidah Suaidah ◽  
Eka Triwahyuni ◽  
Muryanto Muryanto ◽  
Yosie Andriani ◽  
...  

Oil palm empty fruit bunch (OPEFB) constitutes a great source of lignocellulosic biomass, mainly comprising of 66.97 % of holocellulose (cellulose and hemicellulose) and 24.45 % of lignin. This present work aimed to hydrolyze cellulose present in OPEFB to form glucose with the aid of Aspergillus niger. A. niger is a type of filamentous fungi able to produce cellulase, a multi-enzyme complex consisting of an endoglucanase, exoglucanase, and β-glucosidase, able to converting cellulose into glucose. The glucose produced is then fermented to produce bioethanol. The present study compared hydrolytic activity of cellulose between OPEFB with pretreatment using NaOH 10 % and OPEFB without pretreatment, concerning temperature, pH, and hydrolysis time. The concentration of reducing sugar derived from cellulosic hydrolysis was determined by using a glucose assay of 3.5-dinitrosalicylic acid. The results showed that the optimum temperature for hydrolysis of cellulose OPEFB (pretreated and untreated) was at 40 °C and the optimum pH was 5.0 for OPEFB-untreated and 5.5 for OPEFB-pretreated. Hydrolysis of cellulose at 40 °C and 3 d yielded reducing sugar 13.01 mg mL−1 and 1.16 mg mL−1 for OPEFB-untreated and OPEFB-pretreated, respectively.

2021 ◽  
Author(s):  
Dwini Normayulisa Putri ◽  
Meka Saima Perdani ◽  
Masafumi Yohda ◽  
Tania Surya Utami ◽  
Muhamad Sahlan ◽  
...  

Abstract Enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB) that has been pretreated by modified pretreatment has been investigated in this study. The OPEFB used was pretreated by using sequential peracetic acid – alkaline peroxide solution. As the modification method, the assistance of pretreatment by ultrasound was conducted, in order to increase the enzyme accessibility. Therefore, it enhances the production of reducing sugar on the hydrolysis process. Prior to hydrolysis process, OPEFB was initially treated by using peracetic acid solution, comprise of CH3COOH (> 99%) and H2O2 (30% w/w), assisted by ultrasound for 3 hours at 35oC. Afterwards, OPEFB was treated by using alkaline peroxide solution, comprise of NaOH (40% w/w) and H2O2 (35% w/w), assisted by ultrasound for 10 hours at 35oC. OPEFB that has been pretreated was then subjected to enzymatic hydrolysis process using cellulase enzyme, in order to convert cellulose content into reducing sugar. Enzymatic hydrolysis was carried out at 50oC in a shaker incubator with 150 rpm for 48 hours. In this study, the effect of different enzyme concentration and hydrolysis time towards the sugar concentration in modified-pretreated OPEFB was observed and analyzed. Three different concentrations of enzyme were used, including 1.25, 2.5, and 5 g/L, and reducing sugar concentrations were analyzed at 30 and 45 minutes, and 1, 2, 4, 6, 24, 30, and 48 hours. Based on results, enzyme concentration has a significant effect to the production of reducing sugar. The reducing sugar concentrations obtained at the end of the hydrolysis process were 8.48, 11.06, 19.16 g/L, at the enzyme concentrations of 1.25, 2.5, and 5 g/L, respectively. At any hydrolysis time, the highest sugar concentration has been achieved on the highest enzyme concentration of 5 g/L. Moreover, the effective hydrolysis time were achieved at 6 hours, at all concentration of enzyme, since the production of reducing sugar were insignificant after 6 hours. This study showed an increase in reducing sugar production by 8.25% in the hydrolysis process using OPEFB pretreated by modified pretreatment compared to the non-modified pretreatment.


2010 ◽  
Vol 10 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Yanni Sudiyani ◽  
Euis Hermiati

Lignocellulosic biomass is a potential alternative source of bioethanol for energy. The lignocellulosics are abundantly available in Indonesia. Most of them are wastes of agriculture, plantation and forestry. Among those wastes, oil palm empty fruit bunch (OP EFB) is one of a potential lignocellulosics to be converted to bioethanol. This EFB, which is wastes in oil palm factories, is quite abundant (around 25 million tons/year) and also has high content of cellulose (41-47%). The conversion of OPEFB to ethanol basically consists of three steps which are pretreatment, hydrolysis of cellulose and hemicellulose to simple sugars (hexoses and pentoses), and fermentation of simple sugars to ethanol. Acid and alkali pretreatments are considered the simplest methods and are potentially could be applied in the next couple of years. However, there are still some problems that have to be overcome to make the methods economically feasible. The high price of cellulose enzyme that is needed in the hydrolysis step is one of factors that cause the cost of EFB conversion is still high. Thus, the search of potential local microbes that could produce cellulase is crucial. Besides that, it is also important to explore fermenting microbes that could ferment six carbon sugars from cellulose as well as five carbon sugars from hemicellulose, so that the conversion of lignocellulosics, particularly EFB, would be more efficient. Keywords: OPEFB, lignocellulosics, pretreatment, fermentation, ethanol


2007 ◽  
Vol 98 (3) ◽  
pp. 554-559 ◽  
Author(s):  
S.H.A. Rahman ◽  
J.P. Choudhury ◽  
A.L. Ahmad ◽  
A.H. Kamaruddin

1977 ◽  
Vol 75 (2) ◽  
pp. 235-243 ◽  
Author(s):  
J. P. RENSTON ◽  
T. J. IHRIG ◽  
R. H. RENSTON ◽  
B. GONDOS ◽  
R. J. MORIN

The characteristics and localization of a cholesterol ester hydrolase enzyme in homogenates of whole testis and in isolated seminiferous tubules and interstitial cells of mature rats have been investigated. Hydrolysis of cholesteryl [1-14C]oleate occurred at an optimum pH of 7·0 was linearly related to time up to 5–6 h of incubation and increased linearly up to 0·25 mg protein/incubation. Hydrolytic activity was inhibited by increasing the incubation temperature from 29 to 41 °C and by sonication. Cholesterol ester hydrolase activity/mg protein was three times greater in homogenates of seminiferous tubules than in interstitial cells. Cholesterol ester hydrolase may function to provide precursors for use in seminiferous tubular steroid hormone biosynthesis or germ cell maturation.


REAKTOR ◽  
2017 ◽  
Vol 16 (4) ◽  
pp. 199
Author(s):  
Fahriya Puspita Sari ◽  
Nissa Nurfajrin Solihat ◽  
Sita Heris Anita ◽  
Fitria Fitria ◽  
Euis Hermiati

ENHANCEMENT OF REDUCING SUGAR PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH BY PRETREATMENT USING ORGANIC ACID IN PRESSURIZED REACTOR. Organic acids are potential to create more environmentally friendly process in the pretreatment of lignocellulosic biomass for bioethanol production. This study was aimed to investigate the influence of organic acid pretreatment in reducing sugar production in a pressurized reactor with various resident times and temperatures on enzymatic hydrolysis of OPEFB. Two different organic acids (maleic acid and oxalic acid) were used in the pretreatment of oil palm empty fruit bunch (OPEFB) using a pressurized reactor. Factorial design using three different temperatures (170, 180, and 190°C) and four resident times (15, 30, 45, and 60 min) were employed, followed by enzymatic hydrolysis. Each condition conducted two repetitions. Analysis was conducted on the reducing sugar that was produced after saccharification by means of the severity factor of each pretreatment condition. Maleic acid showed higher reducing sugar yield with lower severity factor than oxalic acid with the same operating conditions. The highest yield of reducing sugars (80.84%) was obtained using maleic acid at 170 for 60 minutes with severity factor of 1.836. Keywords: bioethanol; organic acid pretreatment; pressurized reactor; severity factor; oil palm empty fruit bunches;   Abstrak Asam organik berpotensi dalam membantu proses praperlakuan dari biomassa lignoselulosa untuk memproduksi bioetanol yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh asam organik, suhu dan waktu operasi terhadap produksi gula pereduksi dengan reaktor bertekanan pada tandan kosong kelapa sawit. Dua asam organik yang berbeda yaitu asam oksalat dan asam maleat digunakan untuk proses praperlakuan tandan kosong kelapa sawit (TKKS) dengan bantuan reaktor bertekanan. Dalam proses praperlakuan digunakan tiga suhu yang berbeda yaitu suhu 170, 180, dan 190°C dan empat waktu operasi 15, 30, 45, dan 60 min yang dilanjutkan dengan proses hidrolisis enzimatis. Setiap kondisi dilakukan dua kali pengulangan. Analisa yang digunakan adalah analisa uji gula pereduksi dan severity factor pada kondisi tiap praperlakuan. Asam maleat menunjukkan hasil yang lebih baik dengan severity factor yang lebih rendah dibandingkan menggunakan asam oksalat dengan kondisi operasi yang sama. Hasil yang didapatkan menunjukkan bahwa praperlakuan tandan kosong kelapa sawit dengan bantuan reaktor bertekanan memiliki rendemen gula pereduksi optimum sebesar 80,84% dengan menggunakan asam maleat pada suhu 170°C selama 60 menit dengan severity factor sebesar 1,836. Kata kunci: bioetanol; praperlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit.


1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Dennis J. Díaz-Rincón ◽  
Ivonne Duque ◽  
Erika Osorio ◽  
Alexander Rodríguez-López ◽  
Angela Espejo-Mojica ◽  
...  

Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.


Sign in / Sign up

Export Citation Format

Share Document