scholarly journals Human response to thermal environment and perceived air quality in an office room with individually controlled convective and radiant cooling systems

2021 ◽  
Vol 246 ◽  
pp. 15002
Author(s):  
Weixin Zhao ◽  
Simo Kilpeläinen ◽  
Risto Kosonen ◽  
Juha Jokisalo ◽  
Sami Lestinen ◽  
...  

The purpose of this study is to analyse the human response to the indoor climate with two individually controlled convective and radiant cooling systems: a low velocity unit combined with radiant panel system (LVRP) and a personalized ventilation system combined with a radiant panel system (PVRP). As a reference system without individual control, diffuse ceiling ventilation combined with a radiant panel system (DCV-RP) was also studied. In laboratory conditions, 10 males and 10 females gave subjective response to the indoor climate during various office activities. The results show that with the reference DCV-RP system, the indoor conditions were worse than with the LVRP and PVRP systems. The thermal sensation and perceived air quality with the PVRP system was better than the LVRP system. After a medium activity task, the thermal acceptability reverts faster with the PVRP than LVRP system. Compared with the PVRP system, the subjects preferred the higher airflow rate at the workstation with the LVRP system. Males preferred a higher airflow rate than females under the same conditions with both micro-environment systems. This research found that there was significant variation in the control preferences of the human subjects concerning the micro-environment, and this emphasizes the need for personalized control to ensure that all occupants are satisfied with the indoor conditions.

2021 ◽  
Vol 195 ◽  
pp. 107736
Author(s):  
Weixin Zhao ◽  
Simo Kilpeläinen ◽  
Risto Kosonen ◽  
Juha Jokisalo ◽  
Sami Lestinen ◽  
...  

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


2022 ◽  
Vol 12 (1) ◽  
pp. 427
Author(s):  
Jeanette Maria Pedersen ◽  
Farah Jebaei ◽  
Muhyiddine Jradi

A well-designed and properly operated building automation and control system (BACS) is key to attaining energy-efficient operation and optimal indoor conditions. In this study, three healthcare facilities of a different type, age, and use are considered as case studies to investigate the functionalities of BACS in providing optimal air quality and thermal comfort. IBACSA, the first-of-its-kind instrument for BACS assessment and smartness evaluation, is used to evaluate the current systems and their control functionalities. The BACS assessment is reported and analyzed. Then, three packages of improvements were implemented in the three cases, focusing on (1) technical systems enhancement, (2) indoor air quality and comfort, and (3) energy efficiency. It was found that the ventilation system domain is the best performer in the three considered cases with an overall score of 52%, 89% and 91% in Case A, B, and C,, respectively. On the other hand, domestic hot water domain scores are relatively low, indicating that this is an area where Danish healthcare facilities need to provide more concentration on. A key finding indicated by the assessment performed is that the three buildings score relatively very low when it comes to the impact criteria of energy flexibility and storage.


Author(s):  
Edgar C. Ambos ◽  
Evan Neil V. Ambos ◽  
Lanndon A. Ocampo

Due to its significant role in improving indoor air quality, displacement ventilation system is widely adopted in current literature. This paper proposes a displacement ventilation system for room conditions with ceilings that are relatively low, internal heat load could be high, walls could be sunlit, and occupants doing the low physical activity. These conditions are prevalent in the Philippines, being a tropical country. Input parameters to the design process such as heat load, the height of the ceiling, comfort, and indoor air quality requirements were generated, and the main output parameters are the stratification height and ventilation airflow rate. To demonstrate the proposed displacement ventilation system, four cases were generated. Results show that the ventilation airflow rates obtained from the four cases were greater than the minimum outdoor air requirements for health in conference rooms and large assembly areas which are 17.5 and 3.5 liters/sec*person respectively, for smoking and no smoking rooms.


2019 ◽  
Vol 111 ◽  
pp. 02003 ◽  
Author(s):  
Kaiser Ahmed ◽  
Kalle Kuusk ◽  
Henrik Heininen ◽  
Endrik Arumägi ◽  
Targo Kalamees ◽  
...  

This study presents the assessment of actual indoor climate condition and energy performance in eight NZEB school and daycare centers of NERO H2020 project. Physical parameters such as indoor temperature, relative humidity, CO2, airflow rate and temperature were measured during heating and cooling seasons, in parallel with an occupants’ questionnaires survey. Besides, calculated and measured energy data was collected from energy performance certificates and energy bills. Thermal comfort and IAQ were assessed based on categories in EN15251 standard with color footprints. Results showed that all the buildings had good or excellent indoor climate during the heating season. However, a large percentage of occupied hours were categorized as category IV during the cooling season, which mainly occurred due to too low indoor temperature caused by the low outdoor temperature during the measurement period. Also, all buildings achieved low CO2 levels. Moreover, the conducted questionaries’ survey showed good correlation with measured results for all buildings except in one building, which had odor and noise problems. In contrast, the measured energy use in 5 buildings out of 7 was increased by factor 2.1-3.0 compared to calculated annual energy use due to a full-time operation of the ventilation system and presence of hot kitchens.


2020 ◽  
pp. 65-74
Author(s):  
Eusébio Conceição ◽  
Mª Inês Conceição ◽  
Mª Manuela Lúcio ◽  
João Gomes ◽  
Hazim Awbi

In this study the numerical simulation of a Heating, Ventilating and Air Conditioning (HVAC) system, based in a personalized ventilation system, installed in an occupied office desk is made. The energy is produced in a Dual Skin Facades (DSF) system installed in the outdoor environment. The personalized ventilation system, placed above and below the writing area, installed in the desk central area. The office desk is occupied by eight virtual manikins. The numerical simulation is made in a winter typical day. This numerical study considers a coupling of a differential numerical model and an integral numerical model. The differential numerical model simulates the Computational Fluids Dynamics (CFD), evaluates the air velocity, air temperature, turbulence intensity and carbon dioxide concentration and calculates the indoor air quality. The integral numerical model simulates the Multi-Node Human Thermo-physiology Model, evaluates the tissue, blood and clothing temperatures distribution and calculates the thermal comfort level. The HVAC system, based on a DSF system, is built using three DSF unities, is equipped with internal venetian blinds. Each one, installed in a virtual chamber, is turned to south. The personalized ventilation system, made with eight upper and eight lower air terminal devices, is installed in the desk central area. On each table top two upper and two lower air terminal devices are considered in the left and right manikin area, while on each side of the table two upper and two lower air terminal devices are placed between the manikins. The office desk is occupied by eight virtual manikins, one sitting on each table top and three sitting on each side of the meeting table. In this numerical study, carried out in winter conditions, the occupants’ clothing level is 1 clo. In these situations a typical activity level of 1.2 met is considered. The evolution of indoor environmental conditions, in the DSF and in the office room, are calculated during a full winter typical day. The thermal comfort, the indoor air quality, the effectiveness for heat removal, the effectiveness for contaminant removal and the Air Distribution Index (ADI), are evaluated. In accordance with the obtained results the thermal comfort levels increase when the air renovation rate increases and the indoor air quality level increases when the air renovation rate increases. However, the ADI is quite constant when the inlet airflow rate increases, because the thermal comfort number decreases when the inlet airflow rate increases and the air quality number increases when the inlet airflow rate increases.


2017 ◽  
Vol 38 (5) ◽  
pp. 505-521 ◽  
Author(s):  
Ferenc Kalmár

In a closed space, appropriate thermal comfort and proper indoor air quality are extremely important in order to obtain the optimal work performance and to avoid health problems of the occupants. Using advanced personalized ventilation systems, different comfort needs can be locally satisfied even in case of warm environments. Thermal sensation and the subjective evaluation of indoor air quality of young and elderly people, men and women respectively, were studied in warm environment using advanced personalized ventilation system combined with total volume ventilation system. Using an advanced personalized ventilation system, 20 m3 h−1 air flow was alternately introduced by three air terminal devices built-in the desk and placed on a horizontal plane at the head level of the sitting subject. Thermal sensation was significantly cooler in case of young women in comparison with the other groups. Odor intensity was evaluated to be significantly lower in case of elderly women in comparison with the other groups. Evaluation of air freshness is in correlation with the general thermal sensation. Variation of the direction of the air velocity vector has a cooling side-effect, which, in warm environments, might be useful in order to improve the thermal comfort sensation. Practical application: From the basic factors that influence the thermal comfort sensation, air velocity is the one and only parameter that must be treated as a vector. The air flow velocity has an important effect on the convective heat quantity released by the human body, but the changes in the air velocity direction have a cooling side-effect. This cooling side-effect should be exploited properly in warm environments by advanced personalized ventilation systems to improve the thermal comfort sensation of the occupants without supplementary energy use.


2019 ◽  
Vol 111 ◽  
pp. 06038
Author(s):  
Marius Adam ◽  
Olga Bancea ◽  
Ioan Aschilean

The requirements for good indoor air quality and energy efficiency have often been considered to conflict with each other, however, buildings with low energy consumption in Europe seem to have also a lower rate of building related health symptoms. The paper aims to develop a succession of necessary operations, an algorithm, for the determination of ventilation efficiency and energy efficiency in industrial ventilation systems, starting from a general model that will be developed according to the particularities of the industrial ventilation system. These systems are important as they are related both to energy cost and indoor climate management as well as to the health of the occupants. The stages of algorithm development will include: source control and efficient removal of contaminants, proper location of fresh air intakes, cleaning of intake air, efficient air distribution in rooms with improved ventilation efficiency, heat recovery from exhaust air, night time ventilation cooling, ventilation rates control by air quality, correct balancing of air flows and controlling the indoor climate locally.


Author(s):  
Tshokey Tshokey ◽  
Pranitha Somaratne ◽  
Suneth Agampodi

Air contamination in the operating room (OR) is an important contributor for surgical site infections. Air quality should be assessed during microbiological commissioning of new ORs and as required thereafter. Despite many modern methods of sampling air, developing countries mostly depended on conventional methods. This was studied in two ORs of the National Hospital of Sri Lanka (NHSL) with different ventilation system; a conventional ventilation (CV) and a laminar air flow (LAF). Both ORs were sampled simultaneously by two different methods, the settle plate and sampler when empty and during use for a defined time period. Laboratory work was done in the Medical Research Institute. The two methods of sampling showed moderate but highly significant correlation. The OR with CV was significantly more contaminated than LAF when empty as well as during use by both methods. Overall, the difference in contamination was more significant when sampled by the sampler. Differences in contamination in empty and in-use ORs were significant in both ORs, but significance is less in LAF rooms. The consistent and significant correlation between settle plate and sampler showed that the settle plate is an acceptable method. The LAF theatre showed less contamination while empty and during use as expected. Air contamination differences were more significant when sampled with sampler indicating that it is a more sensitive method. Both CV and LAF ORs of the NHSL did not meet the contamination standards for empty theatres but met the standards for in-use indicating that the theatre etiquette was acceptable.


Sign in / Sign up

Export Citation Format

Share Document