scholarly journals Features of the survey and monitoring of the technical condition of cultural heritage objects based on the BIM model

2021 ◽  
Vol 258 ◽  
pp. 09029
Author(s):  
Sergey Ekba

In Russia, Building Information Modeling (BIM) is becoming a mandatory requirement for the construction of new buildings. There is a positive experience in the implementation and examination of projects with BIM. A number of Russian companies have already introduced and are actively using information design technologies in their activities. However, at the current moment, the use of BIM in Russia is at the start. This paper shows examples of the use of BIM and laser scanning in the development of scientific and project documentation for cultural heritage sites. The paper shows the stages of engineering research. A comparison is made between traditional methods of building inspection and with the method of laser scanning. The key advantages of using a BIM model at the design stage, restoration and subsequent stages of the object’s life cycle are shown. The promising areas of application of BIM technologies, laser scanning technologies at different stages of the life cycle of an object (buildings, structures, utilities) have been identified.

Author(s):  
Anzhelika A. Sharafutdinova ◽  
◽  
Michael Ja. Bryn ◽  

An industrial object accumulates a great deal of information about its assets throughout its whole development period. This information is provided in the different drawings, passports, regulations, and other technical documentation. One of the common problems of most industrial objects is the disor-ganized storage of technical documentation on assets and its limited access to different industrial ser-vices. This greatly complicates the retrieval of information about the assets to ensure the steady opera-tion of the industrial object. As a consequence, one of the ongoing important tasks becomes the crea-tion of a unified source of up-to-date information about the object’s assets and the facilitation of the access to that data for all the participants of the project, construction, and operation process. Exactly these issues are tackled in the article alongside with the solutions based on using BIM and terrestrial laser scanning. This article also describes the types of BIM and detailed differences between them, the methods to form a BIM, as well as how the methods change at different stages of the life cycle. As well, the typology of tasks for which BIM solutions are applicable. TLS technology is described as a source of initial data for the formation of BIM. This article describes the results of the combined use of BIM and TLS at the stages of design, construction, and operation of an industrial object based on the implemented project. The article provides the result of clash detection in design documentation. The result of clash detection between designed and existing structures is also given. The article also provides the deviations at the construction stage of industrial objects, which were discovered. The ac-quired results demonstrated the effectiveness of using terrestrial laser scanning and BIM in engineering solutions.


2020 ◽  
Vol 12 (24) ◽  
pp. 4028
Author(s):  
Mercedes Solla ◽  
Luisa M. S. Gonçalves ◽  
Gil Gonçalves ◽  
Carina Francisco ◽  
Iván Puente ◽  
...  

Non-destructive testing (NDT) techniques play an important role in the characterization and diagnosis of historic buildings, keeping in mind their conservation and possible rehabilitation. This paper presents a new approach that merges building information modeling (BIM) with environment geospatial data obtained by several non-destructive techniques, namely terrestrial laser scanning, ground-penetrating radar, infrared thermography, and the automatic classification of pathologies based on RGB (red, green, blue) imaging acquired with an unmanned aircraft system (UAS). This approach was applied to the inspection of the Monastery of Batalha in Leiria, Portugal, a UNESCO World Heritage Site. To assess the capabilities of each technique, different parts of the monastery were examined, namely (i) part of its west façade, including a few protruding buttresses, and (ii) the masonry vaults of the Church (nave, right-hand aisle, and transept) and the Founder’s Chapel. After describing the employed techniques, a discussion of the optimization, treatment and integration of the acquired data through the BIM approach is presented. This work intends to contribute to the application of BIM in the field of cultural heritage, aiming at its future use in different activities such as facility management, support in the restoration and rehabilitation process, and research.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


Sign in / Sign up

Export Citation Format

Share Document