scholarly journals The Influence of Decentralized Wind Power on the Characteristics of Distribution Network

2021 ◽  
Vol 261 ◽  
pp. 01037
Author(s):  
Ruomeng Jiang

This paper expounds the influence of decentralized wind power on the characteristics of distribution network. Through analysis, it can be concluded that after installing an appropriate amount of decentralized wind power, the voltage level of load bus can be improved. The power flow distribution will be changed, and the network loss of the power grid will be reduced. The decentralized wind power has also brought about negative impacts, such as voltage flicker and harmonics, the impact on the scope and direction of protection of relay protection, and greater uncertainty in the planning and operation of regional power grid. The analysis above provides some theoretical guidance for the large-scale development of decentralized wind power in the future.

2019 ◽  
Vol 118 ◽  
pp. 02049
Author(s):  
Lan Kang ◽  
Bin He ◽  
Peihong Yang ◽  
Xiaoling Dong

With the growing scale of the power grid and the improvement of the voltage level, the geomagnetically induced currents (GICs) generated by geomagnetic storms has become one of the leading factors that cause large-scale power outages in power grid. Considering the global simultaneity characteristic of geomagnetic storms, this paper presents the concept of mass reactive power disturbance for the first time, analyzes the mechanism of GIC reactive power loss of transformer and reveals the mechanism of mass reactive power disturbance’s influence on voltage. Finally, combined with the practical situation of 750kV EHV power grid in China, the reactive power loss and voltage distribution under the geomagnetic storms at various intensities are calculated, with the grid operating in two typical modes, and the impact of the geomagnetic storm on voltage is illustrated, which provides the theoretical basis for the study of voltage stability.


2012 ◽  
Vol 608-609 ◽  
pp. 569-572 ◽  
Author(s):  
Xi Chao Zhou ◽  
Fu Chao Liu ◽  
Jing Jing Zheng

In recent years, wind power penetration into the grid has increased rapidly with abundant wind resources in Jiuquan, according to the policy of the Chinese government to “establish a ‘Hexi Wind Power Corridor’ and rebuild another Western ‘Terrestrial Three Gorges Dam’”. By the end of 2010, the total installed capacity of wind power in Jiuquan has reached 5160 MW. The wind farms are connected to 110 kV transmission network or above in Jiuquan, the studies of their impacts on the grid, in particular, the grid operation are becoming serious and urgent. Jiuquan is far away from the load center with a weak grid configuration, therefore issues such as transmission line overloading, local grid voltage fluctuation, and transient stability limitation are looming with large scale wind power integration. The power system dispatch and operation are influenced by the intermittent nature of the wind power, which should be regulated by the system reserves. This paper discusses the recent integration of wind power into the grid with a focus on the impact on the Gansu power grid operation. The paper also presents the measures to deal with these issues.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3393 ◽  
Author(s):  
Pingping Yun ◽  
Yongfeng Ren ◽  
Yu Xue

Wind power penetration ratios of power grids have increased in recent years; thus, deteriorating power grid stability caused by wind power fluctuation has caused widespread concern. At present, configuring an energy storage system with corresponding capacity at the grid connection point of a large-scale wind farm is an effective solution that improves wind power dispatchability, suppresses potential fluctuations, and reduces power grid operation risks. Based on the traditional energy-storage battery dispatching scheme, in this study, a multi-objective hybrid optimization model for joint wind-farm and energy-storage operation is designed. The impact of two new aspects, the energy-storage battery output and wind-power future output, on the current energy storage operation are considered. Wind-power future output assessment is performed using a wind-power-based Markov prediction model. The particle swarm optimization algorithm is used to optimize the wind-storage grid-connected power in real time, to develop an optimal operation strategy for an energy storage battery. Simulations incorporating typical daily wind power data from a several-hundred-megawatt wind farm and rolling optimization of the energy storage output reveal that the proposed method can reduce the grid-connected wind power fluctuation, the probability of overcharge and over-discharge of the stored energy, and the energy storage dead time. For the same smoothing performance, the proposed method can reduce the energy storage capacity and improve the economic efficiency of the wind-storage joint operation.


2013 ◽  
Vol 385-386 ◽  
pp. 1053-1058
Author(s):  
Hui Peng ◽  
Sheng Fang Li ◽  
Ya Jun Li ◽  
Yuan Yuan Li ◽  
Jian Ding ◽  
...  

Recently, the development of Chinese wind power generation has formally entered the strategic transformation stage with the combination of large-scale integrated exploitation and distributed access exploitation. It is suitable to adopt distribution access mode due to the characteristics of Chongqings planning wind farm including small generation capacity and distributed location. However, considering that most of planning wind farms are located in the mountain area of northeast and southeast Chongqing with the large-scale geographic area and small load request and the distribution networks are relatively weak, there may be remarkable effect on quality of electric energy even though the distribution access mode is adopted. In this paper, aiming at the voltage fluctuation of access point, the relationships among variables affecting the voltage fluctuation is analyzed, then taking two planning wind farms in northeast and southeast Chongqing respectively as examples, the effects of voltage fluctuation caused by different access points are calculated and analyzed in order to get the allowed maximum capacity of wind farms fitting national standards. In the end, the proposals relevant to the development of wind power and contribution of distribution network are submitted according to the case results.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4717 ◽  
Author(s):  
Sylvester Johansson ◽  
Jonas Persson ◽  
Stavros Lazarou ◽  
Andreas Theocharis

Social considerations for a sustainable future lead to market demands for electromobility. Hence, electrical power distribution operators are concerned about the real ongoing problem of the electrification of the transport sector. In this regard, the paper aims to investigate the large-scale integration of electric vehicles in a Swedish distribution network. To this end, the integration pattern is taken into consideration as appears in the literature for other countries and applies to the Swedish culture. Moreover, different charging power levels including smart charging techniques are examined for several percentages of electric vehicles penetration. Industrial simulation tools proven for their accuracy are used for the study. The results indicate that the grid can manage about 50% electric vehicles penetration at its current capacity. This percentage decreases when higher charging power levels apply, while the transformers appear overloaded in many cases. The investigation of alternatives to increase the grid’s capabilities reveal that smart techniques are comparable to the conventional re-dimension of the grid. At present, the increased integration of electric vehicles is manageable by implementing a combination of smart gird and upgrade investments in comparison to technically expensive alternatives based on grid digitalization and algorithms that need to be further confirmed for their reliability for power sharing and energy management.


Sign in / Sign up

Export Citation Format

Share Document