scholarly journals Unmanned Wing-in-Ground-Effect Ship Design with Optimized Propulsion Mode

2021 ◽  
Vol 261 ◽  
pp. 01069
Author(s):  
Han Zeng ◽  
Yan Zhang

In order to solve the existing deficiencies of the unmanned WIG ship, a new type of unmanned WIG ship with the optimized propulsion unit was designed, where the lift-type water-air amphibious double-ducted-fan propulsion unit increased the drainage and navigation speed of the unmanned WIG ship by a large margin, and the load at the junction between the propulsion unit and ship body was reduced to a great extent. Through simulation and theoretical analysis, it is verified that the unmanned WIG ship with the optimized propulsion mode can further accelerate the drainage and navigation speed of the unmanned WIG ship and reduce the load at the junction between the propulsion unit and ship body during the navigation in water, so its operating performance and safety are both strengthened. Therefore, this newly developed unmanned WIG ship can deliver good social and economic benefits.

2013 ◽  
Vol 734-737 ◽  
pp. 1110-1113
Author(s):  
Xiang Wen Lv ◽  
Xiong Tong ◽  
Xian Xie ◽  
Qing Hua Zhou ◽  
Yong Cheng Zhou ◽  
...  

A beneficiation experimental research is conducted on sulfur-containing 18.17% multi-metals tailings. On the basis of the traditional mineral processing technology, it introduces X-51, a new type sulfide mineral activator, to instead of copper sulfate. Eventually, the sulfur concentrate grade is 47.51% with the recovery of 92.11%. The effectively recovery of the sulfur is creating good economic benefits and environmental benefit.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 129
Author(s):  
Kotaro Tanahashi ◽  
Tsuyoshi Koga

Slide-ring (SR) gels, a new type of gels that have cross-links moving along the chains, are known to have unique mechanical characteristics. In the case of biaxial deformations, it has been experimentally shown that the stress–strain (S–S) relationships of SR gels can be well described by the neo-Hookean (NH) model. This behavior is quite different from that of conventional chemical gels, where the S–S curves deviate from the NH model. To understand the molecular mechanism of such peculiar elastic properties of SR gels, we studied the effects of movable cross-links by using molecular simulations and theoretical analysis. We calculate the S–S relationships in biaxial deformation for two types of models: slip model, where the cross-links can slide along chains representing SR gels, and non-slip model, which corresponds to conventional chemical gels. In the theoretical analysis, we calculate the S–S relationships by using the models with the Gaussian and the Langevin chains to investigate the nonlinear stretching effect of the chain in the slip and non-slip models. As a result, we found that the peculiar elastic behaviors of SR gels in biaxial deformations are well explained by the effect of movable cross-links suppressing the nonlinear stretching of the chain.


2011 ◽  
Vol 474-476 ◽  
pp. 729-734
Author(s):  
Qiu Yu Zhang ◽  
Zhi Peng Cai ◽  
Zhan Ting Yuan ◽  
Feng Man Miao

Cross-domain authentication is a key technology used in distributed computing, however, it isn’t perfect. In this paper, a new type of hybrid cross-domain authentication model is proposed to make up its shortcoming in safety, scalability and password synchronization. In this model, advantages of Kerberos and SAML in cross-domain authentication process are combined, and it mixed password transport protocols is adopted to achieve password synchronization. Theoretical analysis shows it can enhance the security and scalability of cross-domain authentication, the efficiency of cross-domain authentication is also improved as the attainment of password synchronization.


2012 ◽  
Vol 253-255 ◽  
pp. 670-673
Author(s):  
Zhi Gang Bai ◽  
Lian Bo Shi

Wave energy is recognized as an important pollution-free source of power generation in the world. So in last decades wide variety of wave energy converters (WEC) has been developed, meanwhile, more economical and reliable technologies were also under process. It is very vital to decide about the location of the WECs in a wave farm, which can increase the electricity generation [1]. To get the optimum power output, it is necessary to evaluate the layout of WECs by computer simulations, such as SWAN, MIKE21, SWASH, etc [2]. Among them, MIKE21 is a professional modeling and simulation engineering software, and is well known as a tool that provides a design environment for engineering, coastal management and planning applications. So, in this paper, MIKE21 BW was introduced briefly and applied to simulate and calculate the wave parameters of the Chengshantou wave farm, then, the layout of a new-type (Water-filled raft) WECs in the Chengshantou wave farm which can generate higher possible power output was investigated and the optimum scheme was achieved finally.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Ge ◽  
Weirui Wang

We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.


Author(s):  
Xiaohong Zhang ◽  
Linyu Liao

As a especial type of synchronous method, compound synchronization is designed by multiple drive systems and response systems. In this paper, a new type of compound synchronization of three drive systems and two response systems is investigated. According to synchronous control of five memristive cellular neural networks (CNNs), the theoretical analysis and demonstration are given out by using Lyapunov stability theory. The corresponding numerical simulations and synchronous performance analysis are supplied to verify the feasibility and scalability of compound synchronization design.


2013 ◽  
Vol 791-793 ◽  
pp. 631-634 ◽  
Author(s):  
Tian Ming Liu ◽  
Wen Xu ◽  
Wei Dong Feng

The research of the expanding broken technology of engine connecting rod (also known as the fracture splitting technology) is based on some known factors which effect on connecting rod splitting to make comprehensive analysis on 36MnVS4, the material of connecting rod which is suitable for the fracture splitting technology, it analyses the effect of each chemical composition in steel on mechanical and physical properties, for material steel of new type fracture splitting connecting rod , and makes a theoretical analysis on the fracture splitting technology of the engine connecting rod. Through the analysis and research, a new method to research the fracture splitting of connecting rod is determined, as well as gets some rules to affect process parameter.


Sign in / Sign up

Export Citation Format

Share Document