scholarly journals Molecular Simulation and Theoretical Analysis of Slide-Ring Gels under Biaxial Deformation

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 129
Author(s):  
Kotaro Tanahashi ◽  
Tsuyoshi Koga

Slide-ring (SR) gels, a new type of gels that have cross-links moving along the chains, are known to have unique mechanical characteristics. In the case of biaxial deformations, it has been experimentally shown that the stress–strain (S–S) relationships of SR gels can be well described by the neo-Hookean (NH) model. This behavior is quite different from that of conventional chemical gels, where the S–S curves deviate from the NH model. To understand the molecular mechanism of such peculiar elastic properties of SR gels, we studied the effects of movable cross-links by using molecular simulations and theoretical analysis. We calculate the S–S relationships in biaxial deformation for two types of models: slip model, where the cross-links can slide along chains representing SR gels, and non-slip model, which corresponds to conventional chemical gels. In the theoretical analysis, we calculate the S–S relationships by using the models with the Gaussian and the Langevin chains to investigate the nonlinear stretching effect of the chain in the slip and non-slip models. As a result, we found that the peculiar elastic behaviors of SR gels in biaxial deformations are well explained by the effect of movable cross-links suppressing the nonlinear stretching of the chain.

2021 ◽  
Vol 233 ◽  
pp. 01054
Author(s):  
ZHAO Ke ◽  
LI Yujie ◽  
ZHANG Liang ◽  
CHEN Shaobo ◽  
Wang Guoliang ◽  
...  

High voltage switches are indispensable in power system which will control and protect the high voltage lines. According to the research of high voltage switch equipment accident rate in the international conference on power grid for according, the high voltage switch equipment mechanical failure accidents accounted for more than 70%. Thus, it is meaningful to research the switch monitoring technology and develop an integration device with easy installation and reliable data transmission. In this paper, a new type of non-contact current sensor is used to develop the online monitoring system for the mechanical characteristics of HV switches, which will monitor and analyze the action characteristics of the opening coil, closing coil and energy storage motor.


2011 ◽  
Vol 243-249 ◽  
pp. 2059-2064
Author(s):  
De Gao Zou ◽  
Dong Qing Li ◽  
Bin Xu ◽  
Xian Jing Kong

Cemented sand and gravel (CSG) is a new type of dam materials. It not only can reduce the waste of resources and environmental pollution, but has the merits of both gravel and concrete. In this study, Cemented sand and gravel specimens with three cement ratios were compacted at optimum water content and cured for 14 days. Based on the consolidated drained shear triaxial tests, the mechanical properties of different proportion of CSG are studied on shear failure mode, stress-strain relationship, shear strength. Research results showed that, with the increasing of the content of cement, the peak and residual strength of CSG were improved, but the failure strains were decreased. In addition, CSG material behaves distinctly softening.


2019 ◽  
Vol 126 (18) ◽  
pp. 185102 ◽  
Author(s):  
D. K. Markushev ◽  
D. D. Markushev ◽  
S. Aleksić ◽  
D. S. Pantić ◽  
S. Galović ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1460 ◽  
Author(s):  
Dan Dobrotă ◽  
Gabriela Dobrotă

The devulcanization of the rubber wastes in autoclave represent a technological variant that allows the superior utilization of rubber wastes, but with high energy consumption. The researches aimed at improving the devulcanization technology in order to obtain reclaimed rubber with superior characteristics, but also with a reduction in energy consumption. An improvement to devulcanization technology consisted in vacuuming the autoclave at the end of the devulcanization process. An increase in the degree of devulcanization of the rubber from 86.83% to 93.81% and an improvement of the physico-mechanical characteristics of the reclaimed rubber was achieved by applying this technology. The realization of the new type of regenerated rubber allowed for an increase in the degree of it use for different mixtures, from 15–20 phr to 30–40 phr without substantially affecting the physical and mechanical properties of the products. Additionally, the researche has shown that, by obtaining the new type of reclaimed rubber, the duration of the refining process has been reduced by 30%. All of this leads to a considerable reduction in energy consumption and transformation of the rubber waste reclaiming process into a sustainable one.


2011 ◽  
Vol 474-476 ◽  
pp. 729-734
Author(s):  
Qiu Yu Zhang ◽  
Zhi Peng Cai ◽  
Zhan Ting Yuan ◽  
Feng Man Miao

Cross-domain authentication is a key technology used in distributed computing, however, it isn’t perfect. In this paper, a new type of hybrid cross-domain authentication model is proposed to make up its shortcoming in safety, scalability and password synchronization. In this model, advantages of Kerberos and SAML in cross-domain authentication process are combined, and it mixed password transport protocols is adopted to achieve password synchronization. Theoretical analysis shows it can enhance the security and scalability of cross-domain authentication, the efficiency of cross-domain authentication is also improved as the attainment of password synchronization.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Ge ◽  
Weirui Wang

We propose the planetary flywheel inerter, which is a new type of ball screw inerter. A planetary flywheel consists of several planetary gears mounted on a flywheel bracket. When the flywheel bracket is driven by a screw and rotating, each planetary gear meshing with an outer ring gear generates a compound motion composed of revolution and rotation. Theoretical analysis shows that the output force of the planetary flywheel inerter is proportional to the relative acceleration of one terminal of the inerter to the other. Optimizing the gear ratio of the planetary gears to the ring gear allows the planetary flywheel to be lighter than its traditional counterpart, without any loss on the inertance. According to the structure of the planetary flywheel inerter, nonlinear factors of the inerter are analyzed, and a nonlinear dynamical model of the inerter is established. Then the parameters in the model are identified and the accuracy of the model is validated by experiment. Theoretical analysis and experimental data show that the dynamical characteristics of a planetary flywheel inerter and those of a traditional flywheel inerter are basically the same. It is concluded that a planetary flywheel can completely replace a traditional flywheel, making the inerter lighter.


Author(s):  
Xiaohong Zhang ◽  
Linyu Liao

As a especial type of synchronous method, compound synchronization is designed by multiple drive systems and response systems. In this paper, a new type of compound synchronization of three drive systems and two response systems is investigated. According to synchronous control of five memristive cellular neural networks (CNNs), the theoretical analysis and demonstration are given out by using Lyapunov stability theory. The corresponding numerical simulations and synchronous performance analysis are supplied to verify the feasibility and scalability of compound synchronization design.


Sign in / Sign up

Export Citation Format

Share Document