scholarly journals Research on the influence of design parameters on mechanical performance of net arch bridge

2021 ◽  
Vol 272 ◽  
pp. 02006
Author(s):  
Xinke Cao ◽  
Zheyuan Lu ◽  
Xianwu Hao ◽  
Guojun Yang

In order to study the suspender layout parameters and design parameters of the tied arch bridge with mesh suspenders under the action of vehicle load, the structure stress is more reasonable and meets the higher economy and aesthetics. Taking a 96m span reticulated tied arch bridge as the engineering background, the finite element model is established by using Midas/Civil 2019 program. The variation law of internal force and Suspender Force of the structure is calculated and analysed under the change of rise span ratio and suspender number parameters, and the relatively optimal value range of corresponding parameters is given. The results show that the rise span ratio should be 0.2-0.24; The number of Suspenders for one side arch rib should be 34-38; The relatively optimal range of the above parameters is discussed for reference.

2013 ◽  
Vol 477-478 ◽  
pp. 640-645
Author(s):  
Qian Hui Pu ◽  
Hu Zhao

To study the mechanical performance and stability of tied-arch bridge under structural defects and damages, limited element modal of Panzhihua Luoguo Jinshajiang Bridge was established and analyzed. Firstly, some typical damage models and their influence factors were presented. Then, based on the model established, change of suspender force caused by arch rib lineation defect, hanger lineation defect and boom failure was calculated respectively. The stability safety factor under the load group composed of dead load, live load and wind was calculated as well as the second-class nonlinear stability safety factor under structural initial defect. Calculation results shows that, suspender forces were more sensitive to archs vertical defect than to transverse defect. While, short hangers were more sensitive to lineation defect than long ones, and secondary inner force in short booms were bigger than in long ones. The result also tells that lateral wind is bad to lateral stability. Lift wind, somehow, makes positive contribution to structures in-plane stability. Structural initial defect can draw down the second-class stability safety factor under geometric nonlinear condition.


2014 ◽  
Vol 501-504 ◽  
pp. 1238-1242
Author(s):  
Li Wang

Finite element model of the background tied-arch bridge was established and analyzed. Meanwhile, mechanical performance and stability of it under several kinds of simulate structural defects and damages were studied. Some typical damage and influence factors were presented in the beginning. Then, based on the finite element model, the distribution of suspender force corresponding to the simulated defects and failure was calculated respectively. At last, the first class stability safety factor under the combination load was calculated as well as the second class nonlinear stability safety factor under structural arch rib defect. Results of above calculation imply that, suspender forces gained a stronger sensitivity to vertical defect than to transverse defect. While, short suspenders were believed to be more sensitive to lineation defect than long ones according to calculation results. Additionally, secondary inner force of short suspenders was much more intensive than in long ones. The result also tells that lateral wind did bad to stability. Lift wind, contrarily, made a little positive contribution to structures in-plane stability. Simulated structural defects were supposed to aggravate the second class stability safety factor under geometric nonlinear condition.


2012 ◽  
Vol 616-618 ◽  
pp. 619-623 ◽  
Author(s):  
Chun Mei Wang ◽  
Gu Zhang Zhuang ◽  
Hai Yin

In this paper, The Copper-bearing minerals Powder (≤2mm) in Dahongshan is used in conical ball grinding, the experimental study shows that the effect of ball material ratio on the grinding efficiency is obvious. The critical value and the optimal value range of the ball material ratio are different on different grinding stages, the feasible ball material ratio of coarse grinding is bigger than the one of fine grinding. In the test conditions, in terms of the ball material ratio, the critical value of ores’ over crushing in coarse grinding is 13, and the optimal range is 6-8, which is beneficial to the next beneficiation; while the critical value in fine grinding is 7 and the optimal range is 5-7. Although the ball material ratios are different, the change rule of grinding fineness corresponding to different particle size fractions is consistent, which can be used as a reference in the site operation optimization.


2013 ◽  
Vol 427-429 ◽  
pp. 90-93 ◽  
Author(s):  
Wen Qing Wang

Based on the principle of orthogonal test, the optimization model of sunflower shaped arch bridge scheme was set up. The five key design parameters were selected as the main factors. The four computation index, which reflect mechanical performance, were selected as analytical objects. The 16 orthogonal experiment schemes were arranged with four levels orthogonal table . The curves of the factors to the index were obtained from the mechanical response under dead load and live load through the finite element analysis model. By the range analysis method, the influential levels of the factors to the index were obtained from the result of the test , and the factor optimizatuion level of the factors was determined to further optimize the layout scheme of the sunfloawer shaped arch bridge.


2013 ◽  
Vol 663 ◽  
pp. 49-54
Author(s):  
Xin Huang ◽  
Z.Z. Bai ◽  
De Wei Chen

In order to find the distribution rules on the shear nails on the steel-concrete composite segment of arch foot of an oblique cross steel box arch bridge, it established a space finite element model through the engineering of Wenzhou Weiwulu oblique cross steel box arch bridge, analyzing the maximum shear stress of the shear nails under normal using stage. The result shows that the welding nails in different position have a great difference in their shear stress. The welding nails which welded in a place that has a greater stiffness bear a bigger shear stress. So their mechanical performance of steel-concrete segment is better. In addition, the maximum shear stress becomes bigger from the bottom up to the top of the steel box.


2013 ◽  
Vol 671-674 ◽  
pp. 952-956 ◽  
Author(s):  
Yi Qiang Xiang ◽  
Li Chang Zhang ◽  
Qiang Qiang Wu

The prestressed concrete deck-tied arch bridge doesn’t only have a long span, good appearance and economy, but also have the characteristics of low requirements to the foundation. It changes traditional tied arch bridge into deck-tied arch bridge, which looks like sunflower-shaped arch and prestressed steel strands are embedded in box girder on the top of the arch. Taking Yingbin Bridge as engineering background, the reasonable analysis model was established and behaviour of the bridge under design load was analyzed. The results shown that the design project is reasonable, prestressing force embedded in box girder can balance horizontal thrust in arch bridge effectively, improving the internal force of the main arch ring.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fangwen Wu ◽  
Wenlong Tang ◽  
Shuo Liu ◽  
Yanpeng Feng ◽  
Guangqian Wang ◽  
...  

A sufficient understanding of mechanical performance of self-anchored suspension bridge with double-sided steel box girder is essential for design and normal use as such bridges are widely built in urban bridge. Using the Yunlongwan Bridge which is a suspension bridge with ultra-wide double-sided steel box girder as an example, this paper investigates its deformation and mechanical performance under vehicle load. Firstly, based on the field test results, the deformation performance of the bridge and the stress distribution of the main girder are analysed, with emphasis on the shear lag effect of double-sided steel box girder. Then, a multiscale model of the bridge was built, and the accuracy of the model was verified by comparison with the test data. Finally, the influence of design parameters on the mechanical behaviour of double-sided steel box girder is studied by numerical simulation. The results show that the deformation of the bridge has good symmetry, there is obvious shear lag effect on the main girder, and the U-rib thickness, diaphragm spacing, and vehicle load could significantly affect the stress of the main girder top plate. The obtained analytical results lead to a better understanding of the mechanical performance and provide reference for the design of self-anchored suspension bridge with double-sided steel box girder.


Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


Sign in / Sign up

Export Citation Format

Share Document