scholarly journals Modeling and Analysis Variable Cross Section Pile Driven in Sandy Soil using Finite Element

2021 ◽  
Vol 318 ◽  
pp. 01005
Author(s):  
Russul O. Makki ◽  
Mohammed K. Fakhraldin

This study focuses on the finite element simulation of piles with different models in sandy soils using the software PLAXIS 3D V20. The parametric study has conducted to investigate the influence of multiple parameters on the axial capacity of steel piles in sandy soil, including the cross-section variables in two cases: open and close-ended piles. The typical circular and square cross-section open and close-ended piles were selected as the reference for comparison with variables cross-section piles. The open-ended tapered pile 3b showed an increase in the maximum load capacity about 210% more than the open-ended circular section, while the close-ended tapered pile 3b showed an increase of about 176% in the axial load capacity more than the solid close-ended circular section. In terms of the effect of pile’s type, all of the close-ended sections outperformed the open-ended sections, with the circular section showing a 146% increase in its close-ended section, while the tapered 3b section showed the lowest difference between the close-ended and the open-ended sections with just 120% increase. These results showed that the tapering pile is much more efficient than any straight-sided pile or even circular pile. The results also showed that a short open-ended pile's capacity is smaller than the corresponding closed-ended pile.

2017 ◽  
Vol 898 ◽  
pp. 1177-1182 ◽  
Author(s):  
Y.G. Li ◽  
Y. Sun ◽  
H.L. Huang ◽  
D.Y. Li ◽  
S.C. Ding

Roll forming has been widely used to manufacture constant cross-section products because of high quality, efficiency and low cost. It is quite epidemic in producing automobile parts made of advanced high strength steels (AHSS) nowadays. However, with the development of the vehicle industry and diversity of the products, variable cross-section profiles have attracted more and more attention. The traditional roll forming technique is difficult to meet the requirements. Chain-die forming which was introduced in recent years makes it possible. Chain-die forming is an extension of roll forming and its key characteristic is enlarging the rotation radii of the moulds, by which the deformation zone is extended. The study focused on the finite element simulations of Chain-die forming U profiles with variable cross-section, including variable width and height. The feasibility of Chain-die forming producing variable cross-section products was verified by the perfect simulation results. The advantage of Chain-die forming was that there was no need to design the intermediate moulds except the finished-profile ones, which reduced the mould quantity immensely. Then the cost was lower.


2011 ◽  
Vol 189-193 ◽  
pp. 4405-4408
Author(s):  
Ke Wang ◽  
Zhe Ying Wang ◽  
Xing Wei Sun

Bulge forming is a novel process aimed at common products including T-branches, cross branches and angle branches. But bulging forming has not applied for two-head abnormity-shaped hollow screw rotor reported in literature. Simulation of the bulging forming of two-head abnormity-shaped hollow screw rotor has not been reported. This paper presents a simulation of the bulge forming process of two-head abnormity-shaped hollow screw rotor using a variable cross-section solid bulging mold. Some conditions including the effect of friction, boundary conditions, contact conditions and the space motion, etc are presented. The mathematical model of three-dimensional finite element analysis has been established. The distribution of generalized plastic strain and general metal flow mode in cross section of two abnormity-shaped hollow screw rotor has been analyzed. It is an effective method for the analysis of other defects and the optimization of process parameters further.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850039 ◽  
Author(s):  
Mohsen Mirzajani ◽  
Naser Khaji ◽  
Muneo Hori

The wave finite element method (WFEM) is developed to simulate the wave propagation in one-dimensional problem of nonhomogeneous linear micropolar rod of variable cross-section. For this purpose, two kinds of waves with fast and slow velocities are detected. For micropolar medium, an additional rotational degree of freedom (DOF) is considered besides the classical elasticity’s DOF. The proposed method is implemented to solve the wave propagation, reflection and transmission of two distinct waves and impact problems in micropolar rods with different layers. Along with new solutions, results of the micropolar wave finite element method (MWFEM) are compared with some numerical and/or analytical solutions available in the literature, which indicate excellent agreements between the results.


2012 ◽  
Vol 557-559 ◽  
pp. 2371-2374
Author(s):  
Lv Zhou Ma ◽  
Jian Liu ◽  
Xun Lin Diao ◽  
Xiao Dong Jia

Based on positional finite element method, this paper attempts to find beam elements that can show the characteristics of the variable cross-section beam and can be practically applied. In this paper, the stain on a random point of the variable cross-section beam element is obtained when beam depth changes in a linear or quadratic parabolic way and beam width is fixed. The calculation is different and simpler than the classical nonlinear FEM.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Li ◽  
L. Zhou ◽  
X. Hua ◽  
D. W. Herrin

Openings in enclosures or walls are frequently the dominant path for sound propagation. In the current work, a transfer matrix method is used to predict the transmission loss of apertures assuming that the cross-sectional dimensions are small compared with an acoustic wavelength. Results are compared with good agreement to an acoustic finite element approach in which the loading on the source side of the finite element model (FEM) is a diffuse acoustic field applied by determining the cross-spectral force matrix of the excitation. The radiation impedance for both the source and termination is determined using a wavelet algorithm. Both approaches can be applied to leaks of any shape and special consideration is given to apertures with varying cross section. Specifically, cones and abrupt area changes are considered, and it is shown that the transmission loss can be increased by greater than 10 dB at many frequencies.


2012 ◽  
Vol 157-158 ◽  
pp. 1689-1694 ◽  
Author(s):  
Xiao Biao Shan ◽  
Nai Ming Qi ◽  
Li Li Wang ◽  
Tao Xie

To solve the technical difficult problem of difficult-to-draw materials, this work presented a composite ultrasonic vibration system with variable cross-section rods. The four-terminal network method and the finite element method were used to design the conical, the exponential and the catenary transducers. The finite element results of show that the oval trajectory can effectively improve the friction effect between the wire and the tool head. The experimental result showed that the maximum amplitude was about 60 μm. It was 3 times of that in our previous work. These results demonstrated the design of the composite ultrasonic vibration system was feasible.


Sign in / Sign up

Export Citation Format

Share Document