Finite Element Simulation of Chain-Die Forming U Profiles with Variable Cross-Section

2017 ◽  
Vol 898 ◽  
pp. 1177-1182 ◽  
Author(s):  
Y.G. Li ◽  
Y. Sun ◽  
H.L. Huang ◽  
D.Y. Li ◽  
S.C. Ding

Roll forming has been widely used to manufacture constant cross-section products because of high quality, efficiency and low cost. It is quite epidemic in producing automobile parts made of advanced high strength steels (AHSS) nowadays. However, with the development of the vehicle industry and diversity of the products, variable cross-section profiles have attracted more and more attention. The traditional roll forming technique is difficult to meet the requirements. Chain-die forming which was introduced in recent years makes it possible. Chain-die forming is an extension of roll forming and its key characteristic is enlarging the rotation radii of the moulds, by which the deformation zone is extended. The study focused on the finite element simulations of Chain-die forming U profiles with variable cross-section, including variable width and height. The feasibility of Chain-die forming producing variable cross-section products was verified by the perfect simulation results. The advantage of Chain-die forming was that there was no need to design the intermediate moulds except the finished-profile ones, which reduced the mould quantity immensely. Then the cost was lower.

2022 ◽  
Author(s):  
Abdelrahman Essa ◽  
Buddhika Abeyrathna ◽  
Bernard Rolfe ◽  
Matthias Weiss

Abstract Flexible Roll Forming (FRF) allows the forming of components with a variable cross-section along the length of the component. However, the process has only limited application in the automotive industry due to wrinkling in the flange which currently prevents the forming of high strength steels and limits the part shape complexity. This paper presents a new forming technology, Incremental Shape Rolling (ISR), where a pre-cut blank is clamped between two dies and then a single forming roll is used to incrementally form the material to the desired shape. The new process is similar to some Incremental Sheet Forming (ISF) approaches but with the difference that Incremental Shape Rolling (ISR) allows the manufacture of longitudinal components from high strength metal sheets. In this work, a numerical model of the ISR of a straight section is developed. Experimental prototyping trials are performed and are used to validate the numerical model which is then applied to analyse the new forming process. The results show that in ISR, tensile residual strains are developed in the flange. Flange wrinkling is observed and directly linked to the number of forming passes that are used in the process.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


Author(s):  
Tarun Nanda ◽  
Vishal Singh ◽  
Virender Singh ◽  
Arnab Chakraborty ◽  
Sandeep Sharma

The automobile industry is presently focusing on processing of advanced steels with superior strength–ductility combination and lesser weight as compared to conventional high-strength steels. Advanced high-strength steels are a new class of materials to meet the need of high specific strength while maintaining the high formability required for processing, and that too at reasonably low cost. First and second generation of advanced high-strength steels suffered from some limitations. First generation had high strength but low formability while second generation possessed both strength and ductility but was not cost effective. Amongst the different types of advanced high-strength steels grades, dual-phase steels, transformation-induced plasticity steels, and complex phase steels are considered as very good options for being extended into third generation advanced high-strength steels. The present review presents the various processing routes for these grades developed and discussed by different authors. A novel processing route known as quenching and partitioning route is also discussed. The review also discusses the resulting microstructures and mechanical properties achieved under various processing conditions. Finally, the key findings with regards to further research required for the processing of advanced high-strength steels of third generation have been discussed.


2015 ◽  
Vol 799-800 ◽  
pp. 439-442
Author(s):  
Ya Zhang ◽  
Dae Hwan Yoon ◽  
Dong Won Jung

Roll forming is a highly useful and important forming technique for sheet metal. As an economic profile product, roll forming products are widely used in transportation, engineering machinery, and civil construction because of their uniform sections, high strength, and low energy consumption[1]. Roll forming is a rapid processing operation used for transforming flat sheets of material into useful profiled sections. However, a lot of components used in the automobile, railway cars, ship construction, and building industries have variable cross sections. Therefore, flexible roll forming was developed recently to produce variable cross section profiles.


Sign in / Sign up

Export Citation Format

Share Document