scholarly journals Success factors for demonstration projects of small-scale stationary fuel cells in residential buildings

2022 ◽  
Vol 334 ◽  
pp. 04007
Author(s):  
Guenter Simader ◽  
Patrick Vidovic

Worldwide small-scale micro-CHPs account for the largest share in the fuel cell market by units of installation (not by installed power output). Notably, the Japanese Ene-Farm program is responsible for over 400.000 micro-CHP fuel cell installations (until the end of June 2021). This is the largest worldwide deployment program and it reflects the long- and outstanding commitment of both the Japanese government and the Japanese industry to form a ‘Hydrogen Society’. In Europe, the situation is entirely different. European projects like PACE financed by the European joint undertaking for hydrogen and fuel cells give a positive impulse for fuel cell based micro-CHP, however it has to be judged as insufficient for a market transformation measure. Presently, only Germany, notably by the KFW433 program, is providing frame conditions for a rollout of fuel cell based micro-CHP systems. This article analyses the success factors for the implementation of Ene-Farm systems in Japan. It compares the different frame conditions of Japan and European countries like Austria and discusses the question whether an Ene-Farm project based on the Japanese success factors could be replicated in Austria. On a bird’s eye, a European perspective will be derived from the analysis.

Author(s):  
Ju¨rgen Karl ◽  
Nadine Frank ◽  
Sotiris Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell systems due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient SOFC systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP). The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier, as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30 percent. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. But this systems requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cells degradation. The European Research Project ‘BioCellus’ focuses on both questions — the influence of the biogenious syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that in particular higher hydrocarbons — the so-called tars — do not have an significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.


2010 ◽  
Vol 12 ◽  
pp. 105-113 ◽  
Author(s):  
Savvas Vasileiadis ◽  
Zoe Ziaka

Our recent communication focuses on small scale and nanoscale type engineering applications of alumina inorganic membrane reactors and reactor-permeator systems for the conversion of renewable and non-renewable hydrocarbons and methane rich streams into hydrogen rich gas for direct inner application and operation of fuel cell systems. This study elaborates on new nanomembrane reactors for the steam-methane/hydrocarbon reforming and water gas shift reactions, including work in the synthesis, manufacturing, modeling and operation of such microreaction systems. The projected small scale reactors, separators and overall reaction systems are of current significance in the area of multifunctional microreactor and nanoreactor design and operation in connection with the operation of fuel cells for transportation, stationary, and portable power generation applications. An added advantage of such systems is the reactive and separative operations of the fuel cell membrane-processor which are combined to convert the hydrocarbon with steam to valuable fuel gas for continuous fuel cell operation. Moreover, the nanomembrane systems under development have the unique characteristics to perform multiple operations per unit volume, such as to utilize beneficial equilibrium shift principles in reactant conversion and product yield through the removal of permselective species (i.e., hydrogen) via the inorganic membrane out of the conversion/reaction zone. In this way, improved hydrogen and product yields can be achieved which exceed the equilibrium calculated yields. Simultaneously, the reaction products, such as synthesis gas (i.e., H2, CO and CO2) at the reactor exit can be used as fuel in mostly solid oxide and molten carbonate fuel cells. The role of the alumina nanomembrane is also in the main conversion and upgrading sections of these feedstocks in order to overcome existing heat and mass transfer limitations and increase the overall efficiency of the microreactor-fuel cell system.


2012 ◽  
Vol 9 (4) ◽  
Author(s):  
Thomas E. Brinson ◽  
Juan C. Ordonez ◽  
Cesar A. Luongo

As fuel cells continue to improve in performance and power densities levels rise, potential applications ensue. System-level performance modeling tools are needed to further the investigation of future applications. One such application is small-scale aircraft propulsion. Both piloted and unmanned fuel cell aircrafts have been successfully demonstrated suggesting the near-term viability of revolutionizing small-scale aviation. Nearly all of the flight demonstrations and modeling efforts are conducted with low temperature fuel cells; however, the solid oxide fuel cell (SOFC) should not be overlooked. Attributing to their durability and popularity in stationary applications, which require continuous operation, SOFCs are attractive options for long endurance flights. This study presents the optimization of an integrated solid oxide fuel cell-fuel processing system model for performance evaluation in aircraft propulsion. System parameters corresponding to maximum steady state thermal efficiencies for various flight phase power levels were obtained through implementation of the particle swarm optimization (PSO) algorithm. Optimal values for fuel utilization, air stoichiometric ratio, air bypass ratio, and burner ratio, a four-dimensional optimization problem, were obtained while constraining the SOFC operating temperature to 650–1000 °C. The PSO swarm size was set to 35 particles, and the number of iterations performed for each case flight power level was set at 40. Results indicate the maximum thermal efficiency of the integrated fuel cell-fuel processing system remains in the range of 44–46% throughout descend, loitering, and cruise conditions. This paper discusses a system-level model of an integrated fuel cell-fuel processing system, and presents a methodology for system optimization through the particle swarm algorithm.


Author(s):  
Stefano Campanari ◽  
Ennio Macchi

High temperature fuel cells are experiencing an increasing amount of attention thanks to the successful operation of prototype plants, including a multi-MW Molten Carbonate Fuel Cell (MCFC) demonstration plant and a hybrid Solid Oxide Fuel Cell (SOFC) gas turbine power plant. Both MCFCs and SOFCs are currently considered attractive for the integration with gas turbines in more complex “hybrid” plants, with projected performances that largely exceed combined cycles efficiencies even at a small-scale size and with an extremely low environmental impact. This paper compares the performances of MCFC and SOFC hybrid cycles. The comparison shows some advantages for the SOFC hybrid cycle in terms of plant simplicity and moderately higher efficiency.


Author(s):  
Thomas E. Brinson ◽  
Juan C. Ordonez ◽  
Cesar A. Luongo

As fuel cells continue to improve in performance and power densities levels rise, potential applications ensue. System-level performance modeling tools are needed to further the investigation of future applications. One such application is small-scale aircraft propulsion. Both piloted and unmanned fuel cell aircrafts have been successfully demonstrated suggesting the near-term viability of revolutionizing small-scale aviation. Nearly all of the flight demonstrations and modeling efforts are conducted with low temperature fuel cells; however, the solid oxide fuel cell (SOFC) should not be overlooked. Attributing to their durability and popularity in stationary applications, which require continuous operation, SOFCs are attractive options for long endurance flights. This study presents the optimization of an integrated solid oxide fuel cell-fuel processing system model for performance evaluation in aircraft propulsion. System parameters corresponding to maximum steady state thermal efficiencies for various flight phase power levels were obtained through implementation of the PSO algorithm (Particle Swarm Optimization). Optimal values for fuel utilization, air stoichiometric ratio, air bypass ratio, and burner ratio, a 4-dimensional optimization problem, were obtained while constraining the SOFC operating temperature to 650–1000 °C. The PSO swarm size was set to 35 particles and the number of iterations performed for each case flight power level was set at 40. Results indicate the maximum thermal efficiency of the integrated fuel cell-fuel processing system remains in the range of 44–46% throughout descend, loitering, and cruise conditions. This paper discusses a system-level model of an integrated fuel cell - fuel processing system, and presents a methodology for system optimization through the particle swarm algorithm.


Author(s):  
Luca Mastropasqua ◽  
Stefano Campanari ◽  
Jack Brouwer

High temperature fuel cells have been studied as a suitable solution for Carbon Capture and Storage (CCS) purposes at a large scale (>100 MW). However, their modularity and high efficiency at small-scale make them an interesting solution for Carbon Capture and Utilisation at the distributed generation scale when coupled to appropriate use of CO2 (i.e., for industrial uses, local production of chemicals etc.). These systems could be used within low carbon micro-grids to power small communities in which multiple power generating units of diverse nature supply multiple products such as electricity, cooling, heating and chemicals (i.e., hydrogen and CO2). The present work explores fully electrochemical power systems capable of producing a highly pure CO2 stream and hydrogen. In particular, the proposed system is based upon integrating a Solid Oxide Fuel Cell (SOFC) with a Molten Carbonate Fuel Cell (MCFC). The use of these high temperature fuel cells has already been separately applied in the past for CCS applications. However, their combined use is yet unexplored. Moreover, both industry and US national laboratories have expressed their interest in this solution. The reference configuration proposed envisions the direct supply of the SOFC anode outlet to a burner which, using the cathode depleted air outlet, completes the oxidation of the unconverted species. The outlet of the burner is then fed to the MCFC cathode inlet which separates the CO2 from the stream. Both the SOFC and MCFC anode inlets are supplied with pre-reformed and desulfurized natural gas. The MCFC anode outlet, which is characterised by a high concentration of CO2, is fed to a CO2 separation line in which a two-stage Water Gas Shift (WGS) reactor and a PSA/membrane system respectively convert the remaining CO into H2 and remove the H2 from the exhaust stream. This has the significant advantage of achieving the required CO2 purity for liquefaction and long-range transportation without requiring the need of cryogenic or distillation plants. Moreover, the highly pure H2 stream can either be sold as transportation fuel or a valuable chemical. Furthermore, different configurations are considered with the final aim of increasing the Carbon Capture Ratio (CCR) and maximising the electrical efficiency. Moreover, the optimal power ratio between SOFC and MCFC stacks is also explored. Complete simulation results are presented, discussing the proposed plant mass and energy balances and showing the most attractive configurations from the point of view of total efficiency and CCR.


Author(s):  
Jurgen Karl ◽  
Nadine Frank ◽  
Sotirios Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell system due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient solid oxide fuel cell (SOFC) systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP).The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30%. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. However, this system requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cell degradation. The European Research Project “BioCellus” focuses on both questions—the influence of the biogenous syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that, in particular, higher hydrocarbons—the so-called tars—do not have any significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat-pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50% even for small-scale systems without any combined processes.


Volume 1 ◽  
2004 ◽  
Author(s):  
D. R. McIlveen-Wright ◽  
J. T. McMullan ◽  
D. J. Guiney

The possibility of integrating biomass gasifiers with fuel cells has already been explored and shown to offer a method for using renewable energy to generate electricity at a small scale. A preliminary study of applying such a system for use in an isolated community and for several selected buildings has been made and the results of these studies reported earlier. In this study wood gasification integrated with fuel cell (WGIFC) systems in CHP configurations for five building systems with different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the WGIFC system scaled to the power demand. Detailed technical, environmental and economic analyses of each version are made, using the ECLIPSE process simulation package. Various factors influencing the economic viability of each application are examined and a sensitivity analysis for each system produced. The WGIFC system was modelled for two different types of fuel cell, the Molten Carbonate and the Phosphoric Acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using ECLIPSE. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. While the wood-fired Phosphoric Acid Fuel Cell (WFPAFC) system was found to have low electrical efficiency (13–16%), the wood-fired Molten Carbonate Fuel Cell (WFMCFC) system was found to be quite efficient for electricity generation (24 to 27%). Much of the waste heat could be recovered for the WFPAFC, so that the overall efficiency was 64 to 67%, and some waste heat, but potentially of higher grade, could be recovered by the WFMCFC to give an overall energy efficiency of 60 to 63%. The capital costs of both systems are still expected to be very high, but the examination of wood fuel prices, fuel cell costs, fuel cell lifetime and waste heat selling prices on the break-even selling price for electricity, as well as comparative sensitivity analyses, can help identify which other factors would have the main impacts on the system economics.


Author(s):  
Luca Mastropasqua ◽  
Stefano Campanari ◽  
Jack Brouwer

The modularity and high efficiency at small-scale make high temperature (HT) fuel cells an interesting solution for carbon capture and utilization at the distributed generation (DG) scale when coupled to appropriate use of CO2 (i.e., for industrial uses, local production of chemicals, etc.). The present work explores fully electrochemical power systems capable of producing a highly pure CO2 stream and hydrogen. In particular, the proposed system is based upon integrating a solid oxide fuel cell (SOFC) with a molten carbonate fuel cell (MCFC). The use of these HT fuel cells has already been separately applied in the past for carbon capture and storage (CCS) applications. However, their combined use is yet unexplored. The reference configuration proposed envisions the direct supply of the SOFC anode outlet to a burner which, using the cathode depleted air outlet, completes the oxidation of the unconverted species. The outlet of the burner is then fed to the MCFC cathode inlet, which separates the CO2 from the stream. This layout has the significant advantage of achieving the required CO2 purity for liquefaction and long-range transportation without requiring the need of cryogenic or distillation plants. Furthermore, different configurations are considered with the final aim of increasing the carbon capture ratio (CCR) and maximizing the electrical efficiency. Moreover, the optimal power ratio between SOFC and MCFC stacks is also explored. Complete simulation results are presented, discussing the proposed plant mass and energy balances and showing the most attractive configurations from the point of view of total efficiency and CCR.


Author(s):  
Dries Verstraete ◽  
Kai Lehmkuehler ◽  
K. C. Wong

Small-scale electrically powered Unmanned Aerial Vehicles (UAVs) are currently in use for a variety of reconnaissance and remote sensing missions. For these missions, electrical propulsion is generally preferred over small internal combustion engines because of the low noise and IR signature, low vibration levels, ease of operational support, and physical robustness. A desire for longer endurance than is available from the current generation of batteries has motivated the development of fuel cell based hybrid electrical propulsion systems. These advanced powerplant designs often include implementation challenges that will require new development methods and tools. Fuel cells generally lead to very low fuel weight at a high specific energy (Wh/kg) but have low specific power (W/kg). A high specific power is required to improve aircraft performance and manoeuvrability. Aircraft concepts powered solely by fuel cells therefore require both extremely lightweight airframes with a large internal volume and low-power payloads, which remains a challenge for conventional airframe designs. A blended-wing-body (BWB) airframe has high aerodynamic and structural efficiencies, which therefore seem ideally suited for this new generation of power-plants. This paper presents the development and testing of a novel BWB fuel-cell powered UAV. The paper first describes the initial design steps that led to the current airframe design. The Mark 1 platform has been developed, with a half-scale model built and currently being flight-tested. Based on the flight test results, the airframe will be scaled up and optimised to accommodate the fuel-cell and its associated systems. This aircraft will then be tested with a standard electrical propulsion system to determine the airworthiness with the restricted fuel cell power output as well as the design of the take-off boost system. This paper reports on the design, analyses, and preliminary testing of a fuel cell powered BWB UAV.


Sign in / Sign up

Export Citation Format

Share Document