scholarly journals Optical properties in the visible range of two different India ink used as biological phantoms

2021 ◽  
Vol 93 (1) ◽  
pp. 10502
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

The optical characteristics of two different brands of India ink, Parker Quink and Pelikan, as an absorber used in preparation a tissue-simulating phantom, have been investigated at visible wavelength range. For this purpose, a single integrating sphere system and a spectrophotometric transmission spectroscopy have been used to estimate the radiometric characteristics. Then, inverse adding-doubling algorithm was implemented to retrieve the optical coefficients of pure ink samples. Parker ink's absorption behavior turned out to incompatible with Pelikan over the present wavelength range. Furthermore, scattering property of both two brands has been exhibited and the albedo was calculated. Parker albedo showed a decremental behavior with wavelength and varied between 0.381 and 0.13. A structural profile of albedo was found for Pelikan, which varied between 0.366 and 0.03. This discrepancy might be explained by the variety of two brands composition besides experimental errors. Furthermore, Parker ink absorption variation turned out to be in correspondence to several tissues' absorption feature over broad wavelength ranges. Finally, Parker ink could be regarded as a better candidate to mimic absorption property for several tissues.

2020 ◽  
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

Abstract The optical characteristics of two different brands of India ink, Parker Quink and Pelikan, as an absorber used in preparation a tissue-simulating phantom, have been investigated at visible wavelength range. For this purpose, a single integrating sphere system and a spectrophotometric transmission spectroscopy have been used to estimate the radiometric characteristics. Then, inverse adding-doubling algorithm was implemented to retrieve the optical coefficients of pure ink samples. Parker ink's absorption behavior turned out to incompatible with Pelikan over the present wavelength range. Furthermore, scattering property of both two brands has been exhibited and the albedo was calculated. Parker albedo showed a decremental behavior with wavelength and varied between 0.381 and 0.13. A structural profile of albedo was found for Pelikan, which varied between 0.366 and 0.03. This discrepancy might be explained by the variety of two brands composition besides experimental errors. Furthermore, Parker ink absorption variation turned out to be in correspondence to several tissues' absorption feature over broad wavelength ranges. Finally, Parker ink could be regarded as a better candidate to mimic absorption property for several tissues.


2021 ◽  
Vol 27 (1) ◽  
pp. 99-107
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

Abstract Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue’s optical properties because of the alteration of tissue’s structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

The optical properties of 1 μm polystyrene in the wavelength range of 500–750 nm were estimated by using a white light spectrophotometric transmittance spectroscopy and a single integrating sphere system. To retrieve the optical characteristics, two analytical methods, namely, diffusion approximation and Kubelka–Munk were used, and then their results were compared with Mie theory calculations. The correspondence of the Kubelka–Munk scattering coefficient with Mie was obvious, and relative errors varied between 6.73% and 2.66% whereas errors varied between 6.87% and 3.62% for diffusion theory. Both analytical methods demonstrated the absorption property of polystyrene over the abovementioned wavelength range. Although absorption coefficient turned out to be much lower than scattering, constructing a realistic optical phantom requires taking into account absorption property of polystyrene. Complex refractive index of polystyrene based on these two methods was determined. Inverse Mie algorithm with scattering coefficient was also used to retrieve the real part of refractive index and absorption coefficient for calculating the imaginary part of refractive index. The relative errors of the real part did not exceed 2.6%, and the imaginary part was in consistence with the prior works. Finally, the presented results confirm the validity of diffusion theory with a single integrating sphere system.


2018 ◽  
Vol 10 (4) ◽  
pp. 124 ◽  
Author(s):  
Ali Shahin ◽  
Moustafa Sayem El-Daher ◽  
Wesam Bachir

The aim of this study is to characterize the optical properties of Intralipid20% using two methods modified Kubelka-Munk model and Mie theory and to test the applicability of a modified Kubelka-Munk model with a single integrating sphere system over a wide wavelength range 470 – 725nm. Scattering coefficients which estimated by these two methods were matched and the absorption effect was observed and quantified. Finally, the imaginary part of the refractive index was estimated besides scattering, absorption and anisotropy coefficients. Full Text: PDF ReferencesB.W. Pogue, and M.S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry", J. Biomed. Opt. 11, 4(2006). CrossRef J. Hwang, C. Ramella-Roman, and R. Nordstrom, "Introduction: Feature Issue on Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices", Biomed. Opt. Express. 3, 6(2012). CrossRef P. Ninni, F. Martelli, and G. Zaccanti, "Intralipid: towards a diffusive reference standard for optical tissue phantoms", Phys. Med. Biol 56, 2(2011). CrossRef S. Flock, S. Jacques, B. Wilson, W. Star, and J.C. van Gemert, "Optical properties of intralipid: A phantom medium for light propagation studies", Lasers. Surg. Med 4, 12(1992). CrossRef R. Michels, F. Foschum, and A. Kienle, "Optical properties of fat emulsions", Opt. Express. 16, 8(2008). CrossRef L. Spinelli et al. "Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method", Opt. Express. 15, 11(2007). CrossRef L. Spinelli et al. "Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink", Biomed. Opt. Express. 5, 7(2014). CrossRef H. van Staveren, C. Moes, J. van Marle, S. Prahl, and J. van Gemert, "Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm", Appl. Opt. 30, 31(1991). CrossRef B. Wilson, M. Patterson, and S. Flock, "Indirect versus direct techniques for the measurement of the optical properties of tissues", Photochem. Photobiol. 46, 5(1987). CrossRef H. Soleimanzad, H. Gurden, and F. Pain, "Optical properties of mice skull bone in the 455- to 705-nm range", J. Biomed. Opt. 22, 1(2017). CrossRef C. Holmer et al. "Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction", J. Biomed. Opt. 12, 1(2007). CrossRef S. Thennadil, "Relationship between the Kubelka–Munk scattering and radiative transfer coefficients", OSA. 25, 7(2008). CrossRef L. Yang, and B. Kruse, "Qualifying the arguments used in the derivation of the revised Kubelka–Munk theory: reply", OSA. 21, 10(2004). CrossRef W. Vargas, and G. Niklasson, "Applicability conditions of the Kubelka–Munk theory", Appl. Opt. 36, 22(1997). CrossRef A. Krainov, A. Mokeeva, E. Segeeva, P. Agrba, and M. Kirillin, "Optical properties of mouse biotissues and their optical phantoms", Opt. Spec. 115, 2(2013). CrossRef H.C. van de Hulst, Light Scattering by Small Particles. (New York, Dover Publication 1981). CrossRef C. Matzler, Matlab Functions for Mie Scattering and Absorption. (Bern, Bern university 2002). DirectLink C. Matzler, Matlab Functions for Mie Scattering and Absorption, version 2 (Bern, Bern university 2002). DirectLink G. Segelstein, The complex refractive index of water [dissertation]. (Kansas, university of Missouri-Kansas city 1981). DirectLink A. Shahin, and W. Bachir, Pol. J. Med. Phys. Eng. 21, 4(2017). CrossRef


2012 ◽  
Vol 132 (2) ◽  
pp. 25-30 ◽  
Author(s):  
Nozomu Hirokubo ◽  
Hiroshi Komatsu ◽  
Nobuaki Hashimoto ◽  
Makoto Sonehara ◽  
Toshiro Sato

2001 ◽  
Vol 67 (11) ◽  
pp. 5267-5272 ◽  
Author(s):  
Thomas H. Painter ◽  
Brian Duval ◽  
William H. Thomas ◽  
Maria Mendez ◽  
Sara Heintzelman ◽  
...  

ABSTRACT We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and babsorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I 0.68) varies with algal concentration (Ca ). Using the relationshipCa = 81019.2 I 0.68+ 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2.


Sign in / Sign up

Export Citation Format

Share Document