scholarly journals Optical investigation of bovine grey and white matters in visible and near-infrared ranges

2021 ◽  
Vol 27 (1) ◽  
pp. 99-107
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

Abstract Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue’s optical properties because of the alteration of tissue’s structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

The optical properties of 1 μm polystyrene in the wavelength range of 500–750 nm were estimated by using a white light spectrophotometric transmittance spectroscopy and a single integrating sphere system. To retrieve the optical characteristics, two analytical methods, namely, diffusion approximation and Kubelka–Munk were used, and then their results were compared with Mie theory calculations. The correspondence of the Kubelka–Munk scattering coefficient with Mie was obvious, and relative errors varied between 6.73% and 2.66% whereas errors varied between 6.87% and 3.62% for diffusion theory. Both analytical methods demonstrated the absorption property of polystyrene over the abovementioned wavelength range. Although absorption coefficient turned out to be much lower than scattering, constructing a realistic optical phantom requires taking into account absorption property of polystyrene. Complex refractive index of polystyrene based on these two methods was determined. Inverse Mie algorithm with scattering coefficient was also used to retrieve the real part of refractive index and absorption coefficient for calculating the imaginary part of refractive index. The relative errors of the real part did not exceed 2.6%, and the imaginary part was in consistence with the prior works. Finally, the presented results confirm the validity of diffusion theory with a single integrating sphere system.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 922
Author(s):  
William Querido ◽  
Shital Kandel ◽  
Nancy Pleshko

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints” can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett H. Hokr ◽  
Joel N. Bixler

AbstractDynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal response of the tissue by training a 5-layer fully connected neural network. We demonstrate the accuracy of the method across a very wide parameter space on a single homogeneous layer tissue model and demonstrate that the method is insensitive to parameter selection of the neural network model itself. Finally, we propose an experimental setup capable of measuring the required information in real time in an in vivo environment and demonstrate proof-of-concept level experimental results.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2015 ◽  
Vol 08 (03) ◽  
pp. 1541005 ◽  
Author(s):  
M. S. Wróbel ◽  
A. P. Popov ◽  
A. V. Bykov ◽  
M. Kinnunen ◽  
M. Jędrzejewska-Szczerska ◽  
...  

Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical properties of phantoms depend on their purpose. Nevertheless, they must accurately simulate specific tissues they are supposed to mimic. Many tissues and organs including head possess a multi-layered structure, with specific optical properties of each layer. However, such a structure is not always addressed in the present-day phantoms. In this paper, we focus on the development of a plain-parallel multi-layered phantom with optical properties (reduced scattering coefficient [Formula: see text] and absorption coefficient μa) corresponding to the human head layers, such as skin, skull, and gray and white matter of the brain tissue. The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy (NIRS) of human brain. Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method. The results show that polyvinyl chloride-plastisol (PVCP) and zinc oxide ( ZnO ) nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties. Good matching was found between optical properties of phantoms and the corresponding values found in the literature.


2000 ◽  
Author(s):  
P. L. Kopsombut ◽  
D. Willis ◽  
A. E. Schen ◽  
L. X. Xu ◽  
X. Xu

Abstract Along with rapid development of diagnostic and therapeutic applications of lasers in medicine, optical properties of various biological tissues have been extensively studied [1]. Most of the studies were performed in vitro owing to the complexity involved in in vivo measurement. To date, it is well understood that living tissue is an absorbing and scattering heterogeneous medium because of its complex structures including blood network. The transport theory cannot be readily used due to the heterogeneity and the absence of the optical properties of living tissues [2]. In this research, we have developed a procedure for measuring the total attenuation coefficient (μ1) of the exteriorized rat 2-D spinotrapezius muscle in the wavelength ranged from 480–560 nm using the collimated light from a Nitrogen-pumped dye laser and a high-sensitivity CCD camera.


Author(s):  
Sachiko Kessoku ◽  
Katsuhiko Maruo ◽  
Shinpei Okawa ◽  
Kazuto Masamoto ◽  
Yukio Yamada

Various non-invasive glucose monitoring methods using near-infrared spectroscopy have been investigated although no method has been successful so far. Our previous study has proposed a new promising method utilizing numerically generated absorbance spectra instead of the experimentally acquired absorbance spectra. The method suggests that the correct estimation of the optical properties is very important for numerically generating the absorbance spectra. The purpose of this study is to measure the change in the optical properties of the skin with the change in the blood glucose level in vivo. By measuring the reflectances of light incident on the skin surface at two distances from the incident point, the optical properties of the skin can be estimated. The estimation is a kind of the inverse problem based on the simulation of light propagation in the skin. Phantom experiments have verified the method and in vivo experiments are to be performed.


Sign in / Sign up

Export Citation Format

Share Document