scholarly journals Oscillations of the Boundary Layer and High-frequency QPOs

2014 ◽  
Vol 64 ◽  
pp. 05009 ◽  
Author(s):  
A. A. Blinova ◽  
M. Bachetti ◽  
M. M. Romanova
2012 ◽  
Vol 707 ◽  
pp. 482-495 ◽  
Author(s):  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

AbstractThe classical Schlichting boundary layer theory is extended to account for the excitation of generalized surface waves in the frequency and velocity amplitude range commonly used in microfluidic applications, including Rayleigh and Sezawa surface waves and Lamb, flexural and surface-skimming bulk waves. These waves possess longitudinal and transverse displacements of similar magnitude along the boundary, often spatiotemporally out of phase, giving rise to a periodic flow shown to consist of a superposition of classical Schlichting streaming and uniaxial flow that have no net influence on the flow over a long period of time. Correcting the velocity field for weak but significant inertial effects results in a non-vanishing steady component, a drift flow, itself sensitive to both the amplitude and phase (prograde or retrograde) of the surface acoustic wave propagating along the boundary. We validate the proposed theory with experimental observations of colloidal pattern assembly in microchannels filled with dilute particle suspensions to show the complexity of the boundary layer, and suggest an asymptotic slip boundary condition for bulk flow in microfluidic applications that are actuated by surface waves.


1971 ◽  
Vol 46 (1) ◽  
pp. 165-175 ◽  
Author(s):  
Hiroshi Ishigaki

The time-mean skin friction of the laminar boundary layer on a flat plate which is fixed at zero incidence in a fluctuating stream is investigated analytically. Flow oscillation amplitude outside the boundary layer is assumed constant along the surface. First, the small velocity-amplitude case is treated, and approximate formulae are obtained in the extreme cases when the frequency is low and high. Next, the finite velocity-amplitude case is treated under the condition of high frequency, and it is found that the formula obtained for the small-amplitude and high-frequency case is also valid. These results show that the increase of the mean skin friction reduces with frequency and is ultimately inversely proportional to the square of frequency.The corresponding energy equation is also studied simultaneously under the condition of zero heat transfer between the fluid and the surface. It is confirmed that the time-mean surface temperature increases with frequency and tends to be proportional to the square root of frequency. Moreover, it is shown that the timemean recovery factor can be several times as large as that without flow oscillation.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jianqiang Shi ◽  
Xiaojun Tang ◽  
Zhenqing Wang ◽  
Mingfang Shi ◽  
Wei Zhao

Direct numerical simulation (DNS) of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.


Author(s):  
Valentin Bettrich ◽  
Martin Bitter ◽  
Reinhard Niehuis

The use of fluidic oscillators for active flow control applications is a proven and efficient concept. For the well-known highly loaded LP turbine profile T161, the total pressure losses could already reduced by 40% at low Reynolds numbers, were usually flow separation occurs. For further improvements of the active flow control concept, it is essential to understand the driving flow phenomena responsible for the loss reduction mechanism, which are discussed in this paper. The results presented are based on experimental investigations on a flat plate with pressure gradient, imposed with an aerodynamically highly loaded low pressure turbine suction side flow and equipped with active flow control. The analogy to the suction side of the T161 is shown and validated against former cascade measurements. Based on the T161 equivalent operating point of Re = 70,000 and a theoretical out flow Mach number of Ma2,th = 0.6, the focus is set on the interaction of the boundary layer flow with high frequency actuation. The chosen actuator, a high frequency coupled fluidic oscillator, is designed to independently adjust mass flow and frequency. The flat plate is equipped with an array of high frequency actuators to control the flow separation. For this study one oscillator operating point at 6.7kHz is presented and the influence on transition and loss reduction compared to the non-actuated case is discussed. This oscillator operating point was found to be most efficient and the steady and unsteady mixing behavior of the high frequency actuator impact and the low pressure turbine like suction side boundary layer flow is investigated in much detail. Depending on the measurement technique, the isentropic Mach number distribution, frequency spectra, standard deviation, skewness and kurtosis are evaluated. The most important results are on the one hand, that the chosen concept is more efficient compared to former studies in means of mass flow investment, which is mainly based on the chosen oscillator outlet position and frequency. On the other hand, in a transonic flow the mixing and interaction of the high frequency pulses and the boundary layer flow require about 10% of the surface length to even establish and about to 30% to be completed. These results of the mixing behavior between actuator and boundary layer for compressible flow conditions help to attain a fundamental understanding for future designs of active flow control concepts.


Author(s):  
Andrew L. Bodling ◽  
Anupam Sharma

A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.


2019 ◽  
Vol 34 (4) ◽  
pp. 2189-2197 ◽  
Author(s):  
Andy Yoon ◽  
Jianqiao Xiao ◽  
Danny Lohan ◽  
Faraz Arastu ◽  
Kiruba Haran

2016 ◽  
Vol 9 (9) ◽  
pp. 4375-4386 ◽  
Author(s):  
Guylaine Canut ◽  
Fleur Couvreux ◽  
Marie Lothon ◽  
Dominique Legain ◽  
Bruno Piguet ◽  
...  

Abstract. This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.


2000 ◽  
Vol 107 (5) ◽  
pp. 2893-2893
Author(s):  
David Farmer ◽  
Svein Vagle ◽  
Grant Deane

Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 238 ◽  
Author(s):  
Paolo Cristofanelli ◽  
Jgor Arduini ◽  
Francescopiero Calzolari ◽  
Umberto Giostra ◽  
Paolo Bonasoni ◽  
...  

Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. While the atmospheric CH3Cl emissions are predominantly caused by natural sources on the global budget, significant uncertainties still remain for the anthropogenic CH3Cl emission strengths. In summer 2007 an intensive field campaign within the ACTRIS-2 Project was hosted at the Mt. Cimone World Meteorological Organization/Global Atmosphere Watch global station (CMN, 44.17° N, 10.68° E, 2165 m a.s.l.). High-frequency and high precision in situ measurements of atmospheric CH3Cl revealed significant high-frequency variability superimposed on the seasonally varying regional background levels. The high-frequency CH3Cl variability was characterized by an evident cycle over 24 h with maxima during the afternoon which points towards a systematic role of thermal vertical transport of air-masses from the regional boundary layer. The temporal correlation analysis with specific tracers of anthropogenic activity (traffic, industry, petrochemical industry) together with bivariate analysis as a function of local wind regime suggested that, even if the role of natural marine emissions appears as predominant, the northern Italy boundary layer could potentially represent a non-negligible source of CH3Cl during summer. Since industrial production and use of CH3Cl have not been regulated under the Montreal Protocol (MP) or its successor amendments, continuous monitoring of CH3Cl outflow from the Po Basin is important to properly assess its anthropogenic emissions.


Sign in / Sign up

Export Citation Format

Share Document