scholarly journals Entropy in Spacetime and Topological Hair

2018 ◽  
Vol 168 ◽  
pp. 03008
Author(s):  
Young-Hwan Hyun ◽  
Yoonbai Kim

Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.

2016 ◽  
Vol 25 (09) ◽  
pp. 1641016 ◽  
Author(s):  
Rafael P. Bernar ◽  
Luís C. B. Crispino ◽  
Atsushi Higuchi

In [R. P. Bernar, L. C. B. Crispino and A. Higuchi, Phys. Rev. D 90 (2014) 024045.] we investigated gravitational perturbations in the background of de Sitter spacetime in arbitrary dimensions. More specifically, we used a gauge-invariant formalism to describe the perturbations inside the cosmological horizon, i.e. in the static patch of de Sitter spacetime. After a gauge-fixed quantization procedure, the two-point function in the Bunch–Davies-like vacuum state was shown to be infrared finite and invariant under time-translation. In this work, we give details of the calculations to obtain the graviton two-point function in 3 + 1 dimensions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Meng-Sen Ma ◽  
Li-Chun Zhang ◽  
Hui-Hua Zhao ◽  
Ren Zhao

We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameterα.


2021 ◽  
Vol 36 (11) ◽  
pp. 2150079
Author(s):  
E. Alkis ◽  
E. E. Kangal ◽  
G. Onengut ◽  
A. K. Topaksu

We investigate the generalized form of Duffin–Kemmer–Petiau (DKP) equation in the presence of both a position-dependent electrical field and curved spacetime for the 2-dimensional anti-de Sitter spacetime. Moreover, we derive both the asymptotic wave function and construct energy quantization with the help of the properties of gamma function. All thermodynamic quantities of the system have been calculated with the help of the Euler–MacLaurin formula in the final state.


1999 ◽  
Vol 08 (03) ◽  
pp. 325-335 ◽  
Author(s):  
CARLOS BARCELÓ

A generalization of the asymptotic wormhole boundary condition for the case of spacetimes with a cosmological horizon is proposed. In particular, we consider de Sitter spacetime with small cosmological constant. The wave functions selected by this proposal are exponentially damped in WKB approximation when the scale factor is large but still much smaller than the horizon size. In addition, they only include outgoing gravitational modes in the region beyond the horizon. We argue that these wave functions represent quantum wormholes and compute the local effective interactions induced by them in low-energy field theory. These effective interactions differ from those for flat spacetime in terms that explicitly depend on the cosmological constant.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ren Zhao ◽  
Mengsen Ma ◽  
Huihua Zhao ◽  
Lichun Zhang

It is wellknown that there are two horizons for the Reissner-Nordstrom-de Sitter spacetime, namely, the black hole horizon and the cosmological one. Both horizons can usually seem to be two independent thermodynamic systems; however, the thermodynamic quantities on both horizons satisfy the laws of black hole thermodynamics and are not independent. In this paper by considering the relations between the two horizons we give the effective thermodynamic quantities in Reissner-Nordstrom-de Sitter spacetime. The thermodynamic properties of these effective quantities are analyzed; moreover, the critical temperature, critical pressure, and critical volume are obtained. We also discussed the thermodynamic stability of Reissner-Nordstrom-de Sitter spacetime.


2009 ◽  
Vol 80 (8) ◽  
Author(s):  
Paul R. Anderson ◽  
Carmen Molina-París ◽  
Emil Mottola

Author(s):  
Abhishek Mathur ◽  
Sumati Surya ◽  
Nomaan X

Abstract We calculate Sorkin's manifestly covariant, spacetime entanglement entropy (SSEE) for a massive and massless minimally coupled free Gaussian scalar field for the de Sitter horizon and Schwarzschild de Sitter horizons, respectively, in d > 2. In de Sitter spacetime we restrict the Bunch-Davies vacuum in the conformal patch to the static patch to obtain a mixed state. The finiteness of the spatial L2 norm in the static patch implies that the SSEE is well defined for each mode. We find that for this mixed state it is independent of the effective mass of the scalar field and matches results obtained by Higuchi and Yamamoto, where, a spatial density matrix was used to calculate the horizon entanglement entropy. Using a cut-off in the angular modes we show that the SSEE is proportional to the area of the de Sitter cosmological horizon. Our analysis can be carried over to the black hole and cosmological horizon in Schwarzschild de Sitter spacetime, which also has finite spatial L2 norm in the static regions. Although the explicit form of the modes is not known in this case, we use appropriate boundary conditions for a massless minimally coupled scalar field, to find the mode-wise SSEE for both the black hole and de Sitter cosmological horizons. As in the de Sitter calculation we see that SSEE is proportional to the horizon area in each case after taking a cut-off in the angular modes.


1996 ◽  
Vol 11 (25) ◽  
pp. 2027-2036 ◽  
Author(s):  
RONG-GEN CAI ◽  
YUAN-ZHONG ZHANG

The entropy of a free scalar field is calculated in the Reissner–Nordström–(anti-)de Sitter spacetimes. Due to the presence of the cosmological horizon in the Reissner–Nordström–de Sitter spacetime, we introduce a cutoff at the cosmological horizon, besides the cutoff at the horizon of black holes in the brick wall model. The entropy is found to be the sum of two terms, which are proportional to the area of the cosmological horizon and of black hole horizon, respectively. In the Reissner–Nordström–anti-de Sitter spacetime the contribution of the anti-de Sitter background to the entropy of scalar fields vanishes when an infinite volume is taken. The entropy of scalar fields is also evaluated in some special backgrounds described by solutions of Einstein–Maxwell equations with a cosmological constant, such as the cold black holes, lukewarm black holes, ultracold solutions, a naked singularity in de Sitter space, and the de Sitter space. The physical meaning of some results is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document