scholarly journals Modelling and characterisation of the high-rate behaviour of rock material

2018 ◽  
Vol 183 ◽  
pp. 01040
Author(s):  
Simon Larsson ◽  
Masahiro Nishida ◽  
Shuhei Kurano ◽  
Tomoki Moroe ◽  
Gustaf Gustafsson ◽  
...  

For future reliable numerical simulations of impact wear on steel structures caused by rock material, knowledge about the dynamic mechanical properties of rock material is required. This paper describes the experimental and numerical work to investigate the dynamic mechanical properties of diabase (dolerite), a subvolcanic rock material. In this study, diabase from southern Sweden was used. The impact compressive strength of diabase with a density of 2.63 g/cm3 was examined by using the split-Hopkinson pressure bar (Kolsky bar) method. Cylindrical specimens were used, with a diameter of 8.9 mm and a length of 14 mm. To characterise the rock material, uniaxial compression tests were performed, at high strain rates (150 s-1). Using an inverse modelling approach, material parameters for an elastic constitutive model, with a stress-based fracture criterion were determined. The constitutive model was used in a finite element simulation of a high strain rate uniaxial compression test. Results obtained from the numerical model were in line with the experimental results.

2016 ◽  
Vol 1136 ◽  
pp. 543-548 ◽  
Author(s):  
Qing Feng Liu ◽  
Ning Chang Wang ◽  
Lan Yan ◽  
Feng Jiang ◽  
Hui Huang

The dynamic mechanical properties of oxygen free copper has been tested under the different strain rate (4700s-1~21000s-1) at the room temperature by split Hopkinson pressure bar (SHPB), the true stress-true strain curves has been obtained. Power-Law constitutive model and Johnson-Cook constitutive model have been built to fit the experimental result from SHPB test of oxygen free copper, meanwhile, the constitutive model can be applied to the simulation analysis of cutting process. The results show that the oxygen free copper is sensitive to the strain rate. In addition, the Johnson-Cook constitutive model predicts the plastic flow stress of the oxygen free copper more accurately than the Power-Law constitutive model at the high strain rate.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1154
Author(s):  
Bingfeng Wang ◽  
Chu Wang ◽  
Bin Liu ◽  
Xiaoyong Zhang

The dynamic mechanical properties and microstructure of the (Al0.5CoCrFeNi)0.95Mo0.025C0.025 high entropy alloy (HEA) prepared by powder extrusion were investigated by a split Hopkinson pressure bar and electron probe microanalyzer and scanning electron microscope. The (Al0.5CoCrFeNi)0.95Mo0.025C0.025 HEA has a uniform face-centered cubic plus body-centered cubic solid solution structure and a fine grain-sized microstructure with a size of about 2 microns. The HEA possesses an excellent strain hardening rate and high strain rate sensitivity at a high strain rate. The Johnson–Cook plastic model was used to describe the dynamic flow behavior. Hat-shaped specimens with different nominal strain levels were used to investigate forced shear localization. After dynamic deformation, a thin and short shear band was generated in the designed shear zone and then the specimen quickly fractured along the shear band.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Changming Zhang ◽  
Anle Mu ◽  
Yun Wang ◽  
Hui Zhang

In order to investigate the static and dynamic mechanical properties of TC18 titanium alloy, the quasi-static stress–strain curve of TC18 titanium alloy under room temperature was obtained by DNS 100 electronic universal testing machine (Changchun Institute of Mechanical Science Co., Ltd., Changchun, China). Meanwhile, the flow stress–strain curves under different temperatures and strain rates are analyzed by split Hopkinson pressure bar (SHPB) device with synchronous assembly system. On the basis of the two experimental data, the JC constitutive model under the combined action of high temperature and impact load is established using the linear least squares method. The results show the following: the yield strength and flow stress of TC18 titanium alloy increase slowly with the increase of the strain rate, and the strain value corresponding to the yield strength is reduced. With the increase of strain, the flow stress increases at first and then decreases at different temperatures. The strain value corresponding to the transition point rises with the temperature increase, and the corresponding stress value remains basically unchanged. With the increase of experimental temperature, the flow stress shows a downward trend, and the JC constitutive model can predict the plastic flow stress well.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950013 ◽  
Author(s):  
Liping Ying ◽  
Yijiang Peng ◽  
Hongming Yang

In this paper, the base force element method (BFEM) for dynamic damage problems is proposed. And the BFEM model was applied to investigate the dynamic mechanical behavior of recycled aggregate concrete (RAC). Any convex polygon recycled aggregate was simulated. A constitutive relationship of dynamic damage was given. The compression test under dynamic loadings on the recycled concrete specimen was simulated. The stress–strain softening curve, variation law of dynamic enhancement coefficient and the damage pattern were researched under different strain rates. The dynamic properties of recycled concrete materials at high strain rate are also studied. The effect of different aggregate distribution on the mechanical properties of concrete was studied. The results of dynamic calculation of recycled concrete materials by this method are compared with the experimental results. The numerical simulation results are in good agreement with the experimental results. The comparative analysis on the dynamic mechanical properties of RAC and natural aggregate concrete (NAC) was also studied. The results show that the BFEM can be used to analyze the dynamic mechanical properties of RAC and NAC under high strain rate, and can be used for large-scale engineering calculations.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Yanbing Wang ◽  
Xingyuan Zhou ◽  
Ji Kong ◽  
Bingbing Yu

In order to examine the dynamic mechanical properties, dynamic crack proposition process, and energy loss of fractured rock under dynamic loading, the specimens with different fracture dig angles were processed with Φ50 mm × 50 mm cylindrical sandstone, the impact loading test was conducted on 50 mm stem diameter split Hopkinson pressure bar (SHPB) experiment platform, and the whole process of crack propagation and dynamic failure was recorded using a high-speed camera. As a result, the dynamic mechanical properties such as stress wave fluctuation characteristics, peak strength and stress-strain relationship, crack initiation angle, stress and other dependencies with prefabricated fracture angle of the prefabricated fracture specimens under high strain rate were obtained, and the incident energy, absorbed energy, and energy absorption rates were compared to investigate the energy loss law in the dynamic loading; on the contrary, the effects of different loading rates on the dynamic mechanical properties of the sandstone specimens were identified, and finally a set of findings were presented.


Polymer ◽  
2005 ◽  
Vol 46 (10) ◽  
pp. 3528-3534 ◽  
Author(s):  
Xiangyang Hao ◽  
Guosheng Gai ◽  
Fangyun Lu ◽  
Xijin Zhao ◽  
Yihe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document